已知曲線C上任意一點P到兩定點F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設曲線C與x軸負半軸交點為A,過點M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(B在M、C之間),N為BC中點.
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請說明理由.

(1);(2)(。;(ⅱ)不存在.

解析試題分析:(1)由于曲線C上任意一點P到兩定點F1(-1,0)與F2(1,0)的距離之和為4,結合橢圓的定義可知曲線C是以兩定點F1(-1,0)和F2(1,0)為焦點,長軸長為4的橢圓,從而可寫出曲線C的方程;
(2)由已知可設出過點直線l的方程,并設出直線l與曲線C所有交點的坐標;然后聯(lián)立直線方程與曲線C的方程,消去y就可獲得一個關于x的一元二次方程,應用韋達定理就可寫出兩交點模坐標的和與積;(ⅰ)應用上述結果就可以用k的代數(shù)式表示出弦的中點坐標,這樣就可求出ON的斜率,再乘以k就可證明k·kON為定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,結合前邊結果就可將此等式轉化為關于k的一個方程,解此方程,若無解,則對應直線不存在,若有解,則存在且對應直線方程很易寫出來.
試題解析:(1)由已知可得:曲線C是以兩定點F1(-1,0)和F2(1,0)為焦點,長軸長為4的橢圓,所以,故曲線C的方程為:.     4分
(2)設過點M的直線l的方程為y=k(x+4),設B(x1, y1),C(x2, y2)(x2>y2).
(ⅰ)聯(lián)立方程組,得,
,            5分
,,      7分
所以,所以k•kON=為定值.      8分
(ⅱ)若F1N⊥AC,則kAC•kFN= -1,
因為F1 (-1,0),,   10分
代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,顯然不成立,所以這樣的直線不存在.                13分
考點:1.橢圓的方程;2.直線與橢圓的位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓和動圓,直線:分別有唯一的公共點
(Ⅰ)求的取值范圍;
(Ⅱ)求的最大值,并求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:和直線L:="1," 橢圓的離心率,坐標原點到直線L的距離為。
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓C相交于M、N兩點,試判斷是否存在值,使以MN為直徑的圓過定點E?若存在求出這個值,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓Γ:(a>b>0)經(jīng)過D(2,0),E(1,)兩點.
(1)求橢圓Γ的方程;
(2)若直線與橢圓Γ交于不同兩點A,B,點G是線段AB中點,點O是坐標原點,設射線OG交Γ于點Q,且.
①證明:
②求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的方程為,直線l過定點,斜率為k.當k為何值時,直線l與該拋物線:只有一個公共點;有兩個公共點;沒有公共點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,直線,動點P到點F的距離與到直線的距離相等.
(1)求動點P的軌跡C的方程;(2)直線與曲線C交于A,B兩點,若曲線C上存在點D使得四邊形FABD為平行四邊形,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,直線,動點P到點F的距離與到直線的距離相等.
(1)求動點P的軌跡C的方程;
(2)直線與曲線C交于A,B兩點,若曲線C上存在點D使得四邊形FABD為平行四邊形,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖5,為坐標原點,雙曲線和橢圓均過點,且以的兩個頂點和的兩個焦點為頂點的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得交于兩點,與只有一個公共點,且?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知雙曲線的一條漸近線方程為,則雙曲線的離心率為___

查看答案和解析>>

同步練習冊答案