已知橢圓C:和直線L:="1," 橢圓的離心率,坐標(biāo)原點到直線L的距離為。
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓C相交于M、N兩點,試判斷是否存在值,使以MN為直徑的圓過定點E?若存在求出這個值,若不存在說明理由。
(1);(2)
解析試題分析:1)設(shè)橢圓的方程,用待定系數(shù)法求出的值;(2)解決直線和橢圓的綜合問題時注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點,而斜率未知;有的題設(shè)條件已知斜率,點不定,可由點斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與橢圓的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步:求解判別式:計算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問題中結(jié)論.
試題解析:解:(1)直線L:,
由題意得: 又有,
解得:。
(2)若存在,則,設(shè),則:
,
聯(lián)立得:(*)
代入(*)式,得:
,
滿足
考點:(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交的綜合問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.
(1)若直線與拋物線相交于兩點,求弦長;
(2)已知△的三個頂點在拋物線上運動.若點在坐標(biāo)原點,邊過定點,點在上且,求點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓點,離心率為,左右焦點分別為
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,與以為直徑的圓交于兩點,且滿足,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓 的離心率為,過的左焦點的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)的右焦點為,在圓上是否存在點,滿足,若存在,指出有幾個這樣的點(不必求出點的坐標(biāo));若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C上任意一點P到兩定點F1(-1,0)與F2(1,0)的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸負半軸交點為A,過點M(-4,0)作斜率為k的直線l交曲線C于B、C兩點(B在M、C之間),N為BC中點.
(ⅰ)證明:k·kON為定值;
(ⅱ)是否存在實數(shù)k,使得F1N⊥AC?如果存在,求直線l的方程,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點,點P(-,1)在橢圓上,線段PF2與y軸的交點M滿足+=0.
(1)求橢圓C的方程;
(2)橢圓C上任一動點N(x0,y0)關(guān)于直線y=2x的對稱點為N1(x1,y1),求3x1-4y1的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com