14.定義:關于x的兩個不等式f(x)<0,g(x)<0的解集分別為(a,b)和($\frac{1}{a}$,$\frac{1}$),則稱這兩個不等式為對偶不等式,如果不等式x${\;}^{2}-4\sqrt{3}xcosθ+2<0$與不等式2x2+4sinθ+1<0為對偶不等式,且θ∈(0,π),則θ=$\frac{5π}{6}$.

分析 依題意知,a、b為x${\;}^{2}-4\sqrt{3}xcosθ+2<0$=0的兩根,方程2x2+4xsinθ+1=0的兩根為 $\frac{1}{a}$,$\frac{1}$,利用韋達定理可得tanθ=-$\sqrt{3}$,θ∈(0,π),從而可求θ.

解答 解:設方為a、b,則a+b=4$\sqrt{3}$cosθ,ab=2,
又方程2x2+4xsin2θ+1=0的兩根為$\frac{1}{a}$,$\frac{1}$,
所以 $\frac{1}{a}$+$\frac{1}$=-2sinθ,
所以$\frac{4\sqrt{3}cosθ}{2}$=-2sinθ,即tanθ=-$\sqrt{3}$,
因為θ∈(0,π),
所以θ=$\frac{5π}{6}$.
故答案為:$\frac{5π}{6}$.

點評 本題考查三角函數(shù)的化簡求值,考查方程思想與韋達定理的應用,求得tanθ=-$\sqrt{3}$是關鍵,考查運算求解能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.5個黑球和4個白球從左到右任意排成一排,下列說法正確的是( 。
A.總存在一個黑球,它右側的白球和黑球一樣多
B.總存在一個白球,它右側的白球和黑球一樣多
C.總存在一個黑球,它右側的白球比黑球少一個
D.總存在一個白球,它右側的白球比黑球少一個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,且$\overrightarrow{a}$與$\overrightarrow$夾角為120°求:
(Ⅰ)($\overrightarrow{a}$-2$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$);  
(Ⅱ)|$\overrightarrow{a}$+$\overrightarrow$|;
(Ⅲ)$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若直線y=x+b與曲線y=$\sqrt{49-{x}^{2}}$有公共點,則b的取值范圍是( 。
A.[-7,7$\sqrt{2}$]B.[-7$\sqrt{2}$,7$\sqrt{2}$]C.[-7,7]D.[0,7$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}(2-a)x-12,x≤7\\{(a+2)^{x-6}},x>7\end{array}$是R上的增函數(shù)
(1)求實數(shù)a的取值范圍;
(2)若g(x)=-$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax(x∈[{1,4}])$的最小值為-$\frac{16}{3}$,試比較f(g(x))的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知x,y為任意實數(shù),有a=2x+y,b=2x-y,c=y-1
(1)若4x+y=2,求a2+b2+c2的最小值;
(2)求|a|,|b|,|c|三個數(shù)中最大數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列{an}的前n項和為Sn=n(2n+1),則a5=19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在半徑為5的球面上有不共面的四個點A、B、C、D,且AB=CD=x,BC=DA=y,CA=BD=z,則 x2+y2+z2=( 。
A.120B.140C.180D.200

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若sinα是5x2-7x-6=0的根,則$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)tan^2(2π-α)}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)sin(π+α)}$=( 。
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

同步練習冊答案