5.設(shè)α是第三象限角,P(x,-4)是其終邊上一點(diǎn),且cosα=$\frac{x}{5}$,則x=-3,tanα=$\frac{4}{3}$,$\frac{cosα-sinα}{cosα+sinα}$=-$\frac{1}{7}$.

分析 由條件利用任意角的三角函數(shù)的定義,求得x的值,可得tanα的值,再利用$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$求得結(jié)論.

解答 解:∵α是第三象限角,P(x,-4)是其終邊上一點(diǎn),∴x<0,
∵cosα=$\frac{x}{5}$=$\frac{x}{\sqrt{{x}^{2}+16}}$,∴x=-3,∴tanα=$\frac{y}{x}$=$\frac{4}{3}$,
∴$\frac{cosα-sinα}{cosα+sinα}$=$\frac{1-tanα}{1+tanα}$=-$\frac{1}{7}$,
故答案為:-3,$\frac{4}{3}$,-$\frac{1}{7}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.O為平面上的定點(diǎn),A、B、C是平面上不共線的三點(diǎn),若($\overrightarrow{OA}$-$\overrightarrow{OC}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$-2$\overrightarrow{OB}$)=0,則△ABC是( 。
A.以AB為底邊的等腰三角形B.以AB為斜邊的直角三角形
C.以AC為底邊的等腰三角形D.以AC為斜邊的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中a,b,c分別為角A,B,C的對(duì)邊,且$\sqrt{3}$bcosA=asinB
(Ⅰ)求角A
(Ⅱ)若a=2$\sqrt{3}$,求bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=0.61.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知loga2=m,loga3=n,則a2m+n=12,用m,n表示log46為$\frac{m+n}{2m}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,且b=c,橢圓的上頂點(diǎn)到右頂點(diǎn)的距離為2$\sqrt{3}$.
(1)求橢圓的方程;
(2)已知點(diǎn)F是橢圓的右焦點(diǎn),C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為坐標(biāo)原點(diǎn)),是否存在過點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使得AC|=|BC|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若命題“?x0∈R使得${x_0}^2+a{x_0}+a+3<0$”為假命題,則實(shí)數(shù)a的取值范圍是( 。
A.[-6,2]B.[-6,-2]C.[-2,6]D.$[{2-\sqrt{7}{,_{\;}}2+\sqrt{7}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=x2+ax-$\frac{b^2}{4}+1{,_{\;}}$g(x)=2x,
(1)若A={t∈N*|t2-10t+9≤0},當(dāng)a,b∈A時(shí),求f(x)>g(x)恒成立的概率;
(2)若B=[0,9],當(dāng)a,b∈B時(shí),求f(x)>g(x)恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x,y為正實(shí)數(shù),且x+2y=1,則$\sqrt{xy}$的最大值是$\frac{\sqrt{2}}{4}$,$\frac{2x+y}{xy}$的最小值是9.

查看答案和解析>>

同步練習(xí)冊(cè)答案