函數(shù)y=1-的最大值與最小值的和為    .
2
令f(x)=,
則f(x)為奇函數(shù),
故f(x)max+f(x)min=0,
∴ymax+ymin=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)滿足f(x)=f(π-x),且當(dāng)時,f(x)=x+sinx,則(  )
A.f(1)<f(2)<f(3)B.f(2)<f(3)<f(1)
C.f(3)<f(2)<f(1)D.f(3)<f(1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(ax2+x)ex,其中e是自然數(shù)的底數(shù),a∈R.
(1)當(dāng)a<0時,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是單調(diào)函數(shù),求a的取值范圍;
(3)當(dāng)a=0時,求整數(shù)k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給定函數(shù):①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)是____________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

判斷函數(shù)f(x)=ex在區(qū)間(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}等于(  )
A.{x|x≤0或1≤x≤4}
B.{x|0≤x≤4}
C.{x|x≤4}
D.{x|0≤x≤1或x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=,若f(x)在(0,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時是單調(diào)函數(shù),則滿足f(x)=f()的所有x之和為(  )
A.-3B.3C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ex-ex(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(xt)+f(x2t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案