分析 在△CBE中,由余弦定理得CE2=BE2+CB2-2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2-2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2$\sqrt{7}$,在△CED中,由余弦定理得CD2=CE2+DE2-2CE•DEcos120°即可
解答 解:在△CBE中,由余弦定理得CE2=BE2+CB2-2BE•CBcos120°,
即7=1+CB2+CB,解得CB=2.
由余弦定理得CB2=BE2+CE2-2BE•CEcos∠BEC⇒cos∠BEC=$\frac{2\sqrt{7}}{7}$,
⇒sin∠BEC=$\frac{\sqrt{21}}{7}$.
sin∠AED=sin(1200+∠BEC)=$\frac{\sqrt{3}}{2}×\frac{2\sqrt{7}}{7}-\frac{1}{2}×\frac{\sqrt{21}}{7}=\frac{\sqrt{21}}{14}$,
⇒cos∠AED=$\frac{5\sqrt{7}}{14}$.
在直角△ADE中,AE=5,cos$∠AED=\frac{AE}{DE}=\frac{5\sqrt{7}}{14}$,⇒DE=2$\sqrt{7}$,
在△CED中,由余弦定理得CD2=CE2+DE2-2CE•DEcos120°=49
∴CD=7.
故答案為:7
點評 本題考查了正余弦定理在解三角形中的應用,是中檔題
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?m∈[0,1],x+$\frac{1}{x}$<2 | B. | ?m∈[0,1],x+$\frac{1}{x}$≥2 | ||
C. | ?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2 | D. | ?m∈[0,1],x+$\frac{1}{x}$<2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com