5.定義:若一個(gè)正整數(shù)表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么這個(gè)正整數(shù)稱為“神秘?cái)?shù)”,例如12=42-22,12就是“神秘?cái)?shù)”.(1)設(shè)“神秘?cái)?shù)”構(gòu)成數(shù)列{an},求數(shù)列{an}的通項(xiàng)公式;
(2)在區(qū)間[1,200]內(nèi)求所有“神秘?cái)?shù)”之和.

分析 (1)根據(jù)題意,設(shè)兩個(gè)連續(xù)偶數(shù)為2n+2和2n,根據(jù)題意,計(jì)算其和平數(shù)可得(2n+2)2-(2n)2=4(2n+1),故和平數(shù)的特征是4的奇數(shù)倍,{an}的通項(xiàng)公式,
an=4(2n+1);
(2)介于1到200之間的所有“神秘?cái)?shù)”中,最小的為:22-02=4,最大的為:502-482=196,將它們?nèi)苛谐霾浑y求出他們的和.

解答 解:(1)根據(jù)題意,設(shè)兩個(gè)連續(xù)偶數(shù)為2n+2和2n,根據(jù)題意,計(jì)算其和平數(shù)可得(2n+2)2-(2n)2=4(2n+1),
an=4(2n+1);
(2)介于1到200之間的所有“神秘?cái)?shù)”之和,
S=(22-02)+(42-22)+(62-42)+…+(502-482
=502
=2500,
故答案為:2500.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是數(shù)列的求各,根據(jù)“神秘?cái)?shù)”的定義,我們不難將介于1到200之間的所有“神秘?cái)?shù)”都列舉出來,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.要得到函數(shù)y=sin(4x-$\frac{π}{4}$)的圖象,只需將函數(shù)y=sin4x的圖象( 。
A.向左平移$\frac{π}{16}$個(gè)單位B.向右平移$\frac{π}{16}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若${(\frac{x}{a}+\frac{1}{{\root{3}{x}}})^8}$的展開式中常數(shù)項(xiàng)為1,則實(shí)數(shù)a=( 。
A.$-2\sqrt{7}$B.$\sqrt{7}$C.$±2\sqrt{7}$D.$±\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=-2cosx-3,當(dāng)x的取值集合為{x|x=2kπ+π,k∈Z}時(shí),y取得最大值;當(dāng)x的取值集合為{x|x=2kπ,k∈Z}時(shí),y取得最小值-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若sinx+cosx=$\sqrt{2}$,則tanx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓;
②當(dāng)x>0且x≠1時(shí),有l(wèi)nx+$\frac{1}{lnx}$≥2;
③已知曲線C:$\sqrt{\frac{{x}^{2}}{9}}-\sqrt{\frac{{y}^{2}}{16}}=1$和兩定點(diǎn)E(-5,0),F(xiàn)(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||≤6;
④函數(shù)y=2+logax的圖象可以有函數(shù)y=logax(其中a>0且a≠1)的圖象通過伸縮變換得到.
上述命題中錯(cuò)誤命題的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等比數(shù)列{an}中,a2=2,又a2,a3+1,a4成等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,且$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,則a8+b8=(  )
A.311B.272C.144D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,a4,a10是方程2x2-x-7=0的兩根,則a7等于( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{7}{2}$D.-$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xoy中,雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線與橢圓${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于第一、二象限內(nèi)的兩點(diǎn)分別為A,B,若△OAB的外接圓的圓心為$({0,\sqrt{2}a})$,則$\frac{a}$的值為2+$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案