2.已知拋物線C1:y2=2px(p>0)與直線x-y+1=0相切,橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線C1的焦點(diǎn)F重合,且離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)M(a2,0).
(1)求拋物線C1與橢圓C2的方程;
(2)若在橢圓C2上存在兩點(diǎn)A,B使得$\overrightarrow{FA}$=λ$\overrightarrow{FB}$(λ∈[-2,-1]),求|$\overrightarrow{MA}$+$\overrightarrow{MB}$|的最小值.

分析 (1)聯(lián)立直線方程和拋物線方程,由判別式為0求得p,則拋物線方程可求.由題意可得橢圓的c,結(jié)合離心率為$\frac{\sqrt{2}}{2}$及隱含條件求出a,b,則橢圓方程可求;
(2)對(duì)直線l的斜率分類討論:當(dāng)直線l的斜率不存在時(shí),即λ=-1時(shí),直接求出.當(dāng)直線l的斜率存在時(shí),即λ∈[-2,-1)時(shí),設(shè)直線l的方程為y=k(x-1),與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用向量相等$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,可得$\frac{{y}_{1}}{{y}_{2}}$=λ,且λ<0,得到:λ+$\frac{1}{λ}$+2=$\frac{-4}{1+2{k}^{2}}$,由λ∈[-2,-1)可得到k2的取值范圍.由于$\overrightarrow{MA}$=(x1-2,y1),$\overrightarrow{MB}$=(x2-2,y2),可得$\overrightarrow{MA}+\overrightarrow{MB}$=(x1+x2-4,y1+y2),$|\overrightarrow{MA}+\overrightarrow{MB}{|}^{2}$=(x1+x2-4)2+(y1+y22=4+$\frac{10}{1+2{k}^{2}}+\frac{2}{(1+2{k}^{2})^{2}}$,令t=$\frac{1}{1+2{k}^{2}}$換元,利用配方法即可得出|$\overrightarrow{MA}$+$\overrightarrow{MB}$|的最小值.

解答 解:(1)聯(lián)立$\left\{\begin{array}{l}{x-y+1=0}\\{{y}^{2}=2px}\end{array}\right.$,得x2+(2-2p)x+1=0.
由△=(2-2p)2-4=0,解得:p=2.
∴拋物線C1:y2=4x;
又橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線C1的焦點(diǎn)F重合,
∴c=1,且$e=\frac{c}{a}=\frac{\sqrt{2}}{2}$,
∴$a=\sqrt{2}$,則b2=a2-c2=1.
∴橢圓C2的方程為$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)M(a2,0)=(2,0),
如圖:當(dāng)直線l的斜率不存在時(shí),即λ=-1時(shí),A(1,$\frac{\sqrt{2}}{2}$),B(1,-$\frac{\sqrt{2}}{2}$),
又M(2,0),∴|$\overrightarrow{MA}+\overrightarrow{MB}$|=|(-1,$\frac{\sqrt{2}}{2}$)+(-1,-$\frac{\sqrt{2}}{2}$)|=2;
當(dāng)直線l的斜率存在時(shí),即λ∈[-2,-1)時(shí),設(shè)直線l的方程為y=k(x-1),
聯(lián)立$\left\{\begin{array}{l}{y=kx-x}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得(1+2k2)x2-4k2x+2k2-2=0,
設(shè)A(x1,y1),B(x2,y2),y1≠0,y2≠0,
則x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$,x1•x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$,
∴y1+y2=k(x1+x2)-2k=$\frac{-2k}{1+2{k}^{2}}$  ①,
y1•y2=k2(x1x2-(x1+x2)+1)=$\frac{-{k}^{2}}{1+2{k}^{2}}$  ②.
∵$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,∴$\frac{{y}_{1}}{{y}_{2}}$=λ,且λ<0.
將①式平方除以②式得:λ+$\frac{1}{λ}$+2=$\frac{-4}{1+2{k}^{2}}$,
由λ∈[-2,-1),得λ+$\frac{1}{λ}$∈[-$\frac{5}{2}$,-2),即λ+$\frac{1}{λ}$+2∈[-$\frac{1}{2}$,0).
∴-$\frac{1}{2}$≤$\frac{-4}{1+2{k}^{2}}$<0,解得k2≥$\frac{7}{2}$.
∵$\overrightarrow{MA}$=(x1-2,y1),$\overrightarrow{MB}$=(x2-2,y2),
∴$\overrightarrow{MA}+\overrightarrow{MB}$=(x1+x2-4,y1+y2),
又x1+x2-4=$\frac{-4(1+{k}^{2})}{1+2{k}^{2}}$,
∴$|\overrightarrow{MA}+\overrightarrow{MB}{|}^{2}$=(x1+x2-4)2+(y1+y22
=$\frac{16(1+{k}^{2})^{2}}{(1+2{k}^{2})^{2}}$+$\frac{4{k}^{2}}{(1+2{k}^{2})^{2}}$=$\frac{4(1+2{k}^{2})^{2}+10(1+2{k}^{2})+2}{(1+2{k}^{2})^{2}}$
=4+$\frac{10}{1+2{k}^{2}}+\frac{2}{(1+2{k}^{2})^{2}}$,
令t=$\frac{1}{1+2{k}^{2}}$,∵k2≥$\frac{7}{2}$,
∴0<$\frac{1}{1+2{k}^{2}}≤\frac{1}{8}$,即t∈(0,$\frac{1}{8}$],
∴$|\overrightarrow{MA}+\overrightarrow{MB}{|}^{2}$=2t2+10t+4=2(t+$\frac{5}{2}$)2-$\frac{17}{2}$.
則$|\overrightarrow{MA}+\overrightarrow{MB}{|}^{2}$∈(4,$\frac{169}{32}$].
∴|$\overrightarrow{MA}$+$\overrightarrow{MB}$|的最小值為2.

點(diǎn)評(píng) 本題考查直線與圓錐曲線的位置關(guān)系,考查了橢圓與拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了換元法、分類討論、向量相等及其向量運(yùn)算和向量的模等基礎(chǔ)知識(shí)與基本技能方法,考查了分析問(wèn)題和解決問(wèn)題的能力,考查了推理能力和計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,正方形ABCD邊長(zhǎng)為2,E、F分別為AD、CD的中點(diǎn),沿EF將正方形ABCD剪成兩片,將這樣的圖片對(duì)接在正六邊形各邊上,如圖所示,再將所得圖片沿虛線折起,圍成一個(gè)幾何體,則此幾何體的體積( 。
A.3B.4C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知定義域?yàn)镽的奇函數(shù)滿足f(x+4)=f(x),且x∈(0,2)時(shí),f(x)=ln(x2+a),a>0,若函數(shù)f(x)在區(qū)間[-4,4]上有9個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax2-2ax+b(a>0)在區(qū)間[-1,4]上有最大值10和最小值1.設(shè)g(x)=$\frac{f(x)}{x}$.
(1)求a、b的值;
(2)證明:函數(shù)g(x)在[$\sqrt$,+∞)上是增函數(shù);
(3)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=2sin(2x+$\frac{π}{6}$)+1+a,x∈[0,$\frac{3π}{4}$]
(1)求單調(diào)遞增區(qū)間;
(2)若方程f(x)=0在[0,$\frac{3π}{4}$]上有兩個(gè)不同的實(shí)根.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\frac{co{s}^{2}α-si{n}^{2}α}{sinα-cosα}$=$\frac{\sqrt{2}}{4}$,則sinαsin($\frac{π}{2}$+α)等于-$\frac{7}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在各項(xiàng)均為正數(shù)的數(shù)列{an}中,若a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N+).
(1)試判斷數(shù)列{an}的單調(diào)性,并證明對(duì)任意的n∈N+,恒有an<1;
(2)求證:對(duì)一切n∈N+,有an>$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.用長(zhǎng)8m的鋁材,做成一個(gè)“H”字形窗框,求:高和寬各為多少時(shí)窗戶的透亮面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求函數(shù)f(x)=$\frac{4}{2-{x}^{2}}$的圖形的漸近線.

查看答案和解析>>

同步練習(xí)冊(cè)答案