16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若S△ABC=3S${\;}_{△BC{F}_{2}}$,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

分析 如圖所示,S△ABC=3S${\;}_{△BC{F}_{2}}$,可得|AF2|=2|F2C|.A$(-c,\frac{^{2}}{a})$,直線AF2的方程為:y=$\frac{-^{2}}{2ac}$(x-c),代入橢圓方程可得:(4c2+b2)x2-2cb2x+b2c2-4a2c2=0,利用xC×(-c)=$\frac{^{2}{c}^{2}-4{a}^{2}{c}^{2}}{4{c}^{2}+^{2}}$,解得xC.根據(jù)$\overrightarrow{A{F}_{2}}=2\overrightarrow{{F}_{2}C}$,即可得出.

解答 解:如圖所示,
∵S△ABC=3S${\;}_{△BC{F}_{2}}$,
∴|AF2|=2|F2C|.
A$(-c,\frac{^{2}}{a})$,直線AF2的方程為:y-0=$\frac{\frac{^{2}}{a}-0}{-c-c}$(x-c),
化為:y=$\frac{-^{2}}{2ac}$(x-c),代入橢圓方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
可得:(4c2+b2)x2-2cb2x+b2c2-4a2c2=0,
∴xC×(-c)=$\frac{^{2}{c}^{2}-4{a}^{2}{c}^{2}}{4{c}^{2}+^{2}}$,解得xC=$\frac{4{a}^{2}c-^{2}c}{4{c}^{2}+^{2}}$.
∵$\overrightarrow{A{F}_{2}}=2\overrightarrow{{F}_{2}C}$,
∴c-(-c)=2($\frac{4{a}^{2}c-^{2}c}{4{c}^{2}+^{2}}$-c).
化為:a2=5c2,
解得$e=\frac{\sqrt{5}}{5}$.
故答案為:$\frac{{\sqrt{5}}}{5}$.

點評 本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、向量坐標運算性質(zhì)、三角形面積計算公式,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,ABCD是平行四邊形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)證明:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求平面ADE與平面BCE所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線x+y+m=0上存在點P可作圓O:x2+y2=1的兩條切線PA、PB,切點為A、B,且∠APB=60°,則實數(shù)m的取值范圍為$[-2\sqrt{2},2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.半徑不等的兩定圓O1,O2沒有公共點,且圓心不重合,動圓O與定圓O1和定圓O2都內(nèi)切,則圓心O的軌跡是( 。
A.雙曲線的一支B.橢圓
C.雙曲線的一支或橢圓D.雙曲線或橢圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.一次測試中,為了了解學生的學習情況,從中抽取了n個學生的成績進行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)求這n名同學成績的平均數(shù)、中位數(shù)及眾數(shù);
(3)在選取的樣本中,從成績是80分以上(含80分)的同學中隨機抽取3名同學參加志愿者活動,求這3名同學中恰有兩名同學得分在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為2,過右焦點F作直線交該雙曲線于A、B兩點,P為x軸上一點,且|PA|=|PB|,若|AB|=8,則|FP|=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)$f(x)={a^{-{x^2}+3x+2}}(0<a<1)$的單調(diào)遞增區(qū)間是($\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知隨機變量ξ~B(5,$\frac{1}{3}$),則P(ξ=3)=( 。
A.$\frac{5}{27}$B.$\frac{7}{81}$C.$\frac{40}{243}$D.$\frac{19}{144}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若采用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體分別為3,2.

查看答案和解析>>

同步練習冊答案