6.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若采用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體分別為3,2.

分析 從92家銷售連鎖店中抽取30家了解情況,用系統(tǒng)抽樣法,因為92÷30不是整數(shù),所以要剔除一些個體,根據(jù)92÷30=3…2,得到抽樣間隔和隨機剔除的個體數(shù)分別為3和2.

解答 解:∵92÷30不是整數(shù),
∴必須先剔除部分個體數(shù),
∵92÷30=3…2,
∴剔除2個,間隔為3.
故答案為3,2.

點評 本題考查系統(tǒng)抽樣,是一個總體個數(shù)不能被所分的組數(shù)整除的問題,這種題目在做時,注意要提出多余的部分,以達到分成相同的部分的目的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過F1且與x軸垂直的直線交橢圓于A、B兩點,直線AF2與橢圓的另一個交點為C,若S△ABC=3S${\;}_{△BC{F}_{2}}$,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖在空間四邊形OABC中,點M在OA上,且OM=2MA,N為BC中點,則$\overrightarrow{MN}$等于( 。
A.$\frac{1}{2}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$B.$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$C.$\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$D.$\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)命題p:“對任意的x∈R,x2-2x>a”,命題q:“函數(shù)f(x)=x2+2ax+2-a在R上有零點”.如果命題p∨q為真,命題p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)的周期為2,當x∈[-1,1]時f(x)=x2,那么關(guān)于x的方程f(x)-|log5x|=0共有幾個根(  )
A.4個B.5個C.6個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{3}=1$的右焦點為F點,P為橢圓C上一動點,定點A(2,4),則|PA|-|PF|的最小值為( 。
A.1B.-1C.$\sqrt{17}$D.$-\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)(m2-3m)+(m2-5m+6)i(m∈R))是純虛數(shù),則m的值為( 。
A.0B.2C.0或3D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.中心在坐標原點,離心率為 $\frac{5}{3}$且實軸長為6的雙曲線的焦點在 x 軸上,則它的漸近線方程是( 。
A.y=±$\frac{5}{4}$xB.y=±$\frac{4}{5}$xC.y=±$\frac{4}{3}$xD.y=±$\frac{3}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若橢圓C的中心在原點,焦點在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$,點$Q(\sqrt{2},\frac{{\sqrt{2}}}{2})$在橢圓C上.
(1)求橢圓C的標準方程;
(2)若斜率為k(k≠0)的直線n交橢圓C與A、B兩點,且kOA、k、kOB成等差數(shù)列,又有點M(1,1),
求S△ABM的面積(結(jié)果用k表示);
(3)求出(2)中S△ABM的最大值.

查看答案和解析>>

同步練習(xí)冊答案