(2012•日照一模)已知f(x)=
m
n
,其中
.
m
=(sinωx+cosωx,
3
cosωx)
,
.
n
=(cosωx-sinωx,2sinωx)
(ω>0).若f(x)圖象中相鄰的兩條對(duì)稱軸間的距離不小于π.
(I)求ω的取值范圍;
(II)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,a=
7
,S△ABC=
3
2
,當(dāng)ω取最大值時(shí),f(A)=1,求b,c的值.
分析:(I)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算法則列出f(x)的解析式,利用二倍角的正弦、余弦函數(shù)公式化簡(jiǎn),再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由f(x)圖象中相鄰的對(duì)稱軸間的距離不小于π,得到周期的一半大于等于π,即可求出ω的范圍;
(II)由ω的范圍,找出ω的最大值,代入確定出f(x)解析式,由f(A)=1,求出sin(A+
π
6
)的值,由A為三角形的內(nèi)角,得出A+
π
6
的范圍,利用特殊角的三角函數(shù)值求出A的度數(shù),進(jìn)而確定出sinA與cosA的值,由已知的面積,利用三角形面積公式列出關(guān)系式,記作①;再由a與cosA的值,利用余弦定理列出關(guān)系式,記作②,聯(lián)立①②即可求出b與c的值.
解答:解:(I)∵
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx),
∴f(x)=
m
n
=(sinωx+cosωx)(cosωx-sinωx)+2
3
cosωxsinωx
=cos2ωx+
3
sin2ωx=2sin(2ωx+
π
6
),
∵f(x)圖象中相鄰的對(duì)稱軸間的距離不小于π,
T
2
≥π,即
≥π,
則0<ω≤
1
2

(Ⅱ)當(dāng)ω=
1
2
時(shí),f(x)=2sin(x+
π
6
),
∴f(A)=2sin(A+
π
6
)=1,
∴sin(A+
π
6
)=
1
2
,
∵0<A<π,∴
π
6
<A+
π
6
6
,
∴A=
3

由S△ABC=
1
2
bcsinA=
3
2
,得到bc=2,…①
又a2=b2+c2-2bcsinA,a=
7
,
∴b2+c2+bc=7,…②
聯(lián)立①②,
解得:b=1,c=2或b=2,c=1.
點(diǎn)評(píng):此題考查了余弦定理,平面向量的數(shù)量積運(yùn)算,二倍角的正弦、余弦函數(shù)公式,三角形的面積公式,以及三角函數(shù)的周期性及其求法,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).
(1)求證:BD⊥EG;
(2)求平面DEG與平面DEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)給出下列四個(gè)命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個(gè)零點(diǎn);
③函數(shù)y=sin(2x-
π
3
)
的一個(gè)單調(diào)增區(qū)間是[-
π
12
12
]
;
④對(duì)于任意實(shí)數(shù)x,有f(-x)=f(x),且當(dāng)x>0時(shí),f′(x)>0,則當(dāng)x<0時(shí),f′(x)<0.
其中真命題的序號(hào)是
①③④
①③④
(把所有真命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知定義在R上奇函數(shù)f(x)滿足①對(duì)任意x,都有f(x+3)=f(x)成立;②當(dāng)x∈[0,
3
2
]
時(shí)f(x)=
3
2
-|
3
2
-2x|
,則f(x)=
1
|x|
在[-4,4]上根的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)給出下列四個(gè)命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個(gè)零點(diǎn);
③函數(shù)y=2
2
sinxcosx
[-
π
4
,
π
4
]
上是單調(diào)遞減函數(shù);
④若lga+lgb=lg(a+b),則a+b的最小值為4.
其中真命題的序號(hào)是
①④
①④
(把所有真命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案