【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)證明:函數(shù)在區(qū)間上存在唯一的極大值點;
(Ⅲ)證明:函數(shù)有且僅有一個零點.
【答案】(Ⅰ)(Ⅱ)證明見解析(Ⅲ)證明見解析
【解析】
(Ⅰ)求導,從而解得切線的切率,根據(jù)點斜式即可求得結果;
(Ⅱ)根據(jù)的單調性,即可容易求證;
(Ⅲ)根據(jù)的正負,判斷函數(shù)的單調性,即可容易證明.
(Ⅰ)因為,
所以,
,
又因為,
所以切線方程為,
即:.
(Ⅱ)證明:因為和在上單調遞減,
所以在上單調遞減,
且.
又,
所以在內有且僅有一個實數(shù),使得=0,
并且當時,,
當時,,
所以在區(qū)間上有唯一的極大值點.
(Ⅲ)證明:當時,
,,
此時.
當時,
,,
此時.
當時,
因為,所以在內單調遞增.
因為,,
所以在上有且僅有一個零點.
綜上所述,函數(shù)有且僅有一個零點.
科目:高中數(shù)學 來源: 題型:
【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進,到目前,中國擁有世界上最大的快遞市場.某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,每超過(不足,按計算)需再收5元.
該公司將最近承攬的100件包裹的重量統(tǒng)計如下:
包裹重量(單位:) | 1 | 2 | 3 | 4 | 5 |
包裹件數(shù) | 43 | 30 | 15 | 8 | 4 |
公司對近60天,每天攬件數(shù)量統(tǒng)計如下表:
包裹件數(shù)范圍 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件數(shù)(近似處理) | 50 | 150 | 250 | 350 | 450 |
天數(shù) | 6 | 6 | 30 | 12 | 6 |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來5天內恰有2天攬件數(shù)在101~300之間的概率;
(2)①估計該公司對每件包裹收取的快遞費的平均值;
②根據(jù)以往的經驗,公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員3人,每人每件攬件不超過150件,日工資100元.公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學期望,若你是公司老總,是否進行裁減工作人員1人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.
(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;
(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,,橢圓上一點到的距離之和為4.過點作直線的垂線交直線于點.
(1)求橢圓的標準方程;
(2)試判斷直線與橢圓公共點的個數(shù),并說明理由;
(3)直線與直線交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斜率為的直線過拋物線的焦點,且與拋物線交于、兩點.
(1)設點在第一象限,過作拋物線的準線的垂線,為垂足,且,直線與直線關于直線對稱,求直線的方程;
(2)過且與垂直的直線與圓交于、兩點,若與面積之和為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,關于的方程有且僅有一個根, 求實數(shù)的取值范圍;
(3)若對任意,不等式均成立, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象在處的切線為.(為自然對數(shù)的底數(shù)).
(1)求,的值;
(2)當時,求證:;
(3)若對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com