【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列,設(shè)點(diǎn)的坐標(biāo)),其中 ,,且滿足).

1)已知點(diǎn),點(diǎn)滿足,求的坐標(biāo);

2)已知點(diǎn),),且)是遞增數(shù)列,點(diǎn)在直線上,求;

3)若點(diǎn)的坐標(biāo)為,求的最大值.

【答案】(1) (2) (3)4066272

【解析】

(1)由題意求出即可求得點(diǎn)坐標(biāo).(2)由題意求得,又由是遞增數(shù)列得到,由題中所給條件即可求得,代入即可.(3)先求出整理,再由題意利用放縮法得到,取特殊值即可得到.

(1)因?yàn)?/span>、,所以,

又因?yàn)?/span>,, 所以 ,

所以,,

所以點(diǎn)的坐標(biāo)為 .

(2)因?yàn)?/span>,),

,

,,得),

因?yàn)?/span>,而)是遞增數(shù)列,

),

,

所以,

代入,得,

.

3,

,

,

因?yàn)?/span>是偶數(shù),

,

當(dāng),

時(shí)(取法不唯一),,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,其中是等差數(shù)列,且,則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線的斜率為2的切線方程;

2)證明:;

3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦點(diǎn)是,,且過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過左焦點(diǎn)的直線與橢圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn).問橢圓上是否存在點(diǎn),使線段和線段相互平分?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱中,底面為等腰直角三角形,,,是側(cè)棱上一點(diǎn),設(shè)

(1) 若,求的值;

(2) 若,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓E的左焦點(diǎn)且與x軸垂直的直線與橢圓E相交于的PQ兩點(diǎn),O為坐標(biāo)原點(diǎn),的面積為.

1)求橢圓E的方程;

2)點(diǎn)M,N為橢圓E上不同兩點(diǎn),若,求證:的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

對定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意的都有,且對任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U函數(shù)。

1)求證:函數(shù)上的“U函數(shù);

2)設(shè)是(1)中的“U函數(shù),若不等式對一切的恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)是區(qū)間上的“U函數(shù),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第二屆中國國際進(jìn)口博覽會(huì)于2019115日至10日在上海國家會(huì)展中心舉行.它是中國政府堅(jiān)定支持貿(mào)易自由化和經(jīng)濟(jì)全球化,主動(dòng)向世界開放市場的重要舉措,有利于促進(jìn)世界各國加強(qiáng)經(jīng)貿(mào)交流合作,促進(jìn)全球貿(mào)易和世界經(jīng)濟(jì)增長,推動(dòng)開放世界經(jīng)濟(jì)發(fā)展.某機(jī)構(gòu)為了解人們對“進(jìn)博會(huì)”的關(guān)注度是否與性別有關(guān),隨機(jī)抽取了100名不同性別的人員(男、女各50名)進(jìn)行問卷調(diào)查,并得到如下列聯(lián)表:

男性

女性

合計(jì)

關(guān)注度極高

35

14

49

關(guān)注度一般

15

36

51

合計(jì)

50

50

100

1)根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為對“進(jìn)博會(huì)”的關(guān)注度與性別有關(guān);

2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談?wù)勱P(guān)注“進(jìn)博會(huì)”的原因,求這2人中至少有一名女性的概率.

附:.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點(diǎn)E,F分別是棱上的動(dòng)點(diǎn),且.當(dāng)三棱錐的體積取得最大值時(shí),記二面角、平面角分別為,,則( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案