某市規(guī)定,高中學(xué)生三年在校期間參加不少于小時(shí)的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段,
,(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù),并估計(jì)
從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記為3位學(xué)生中參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的人數(shù).試求隨機(jī)變量的分布列和數(shù)學(xué)期望

(Ⅰ)(Ⅱ)


0
1
2
3





 

解析試題分析:(Ⅰ)根據(jù)頻率分布直方圖中小長(zhǎng)方形面積為頻率,而頻數(shù)為總數(shù)與頻率之積. 因此參加社區(qū)服務(wù)時(shí)間在時(shí)間段小時(shí)的學(xué)生人數(shù)為(人),參加社區(qū)服務(wù)時(shí)間在時(shí)間段小時(shí)的學(xué)生人數(shù)為(人).所以抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù)為人.概率估計(jì)為(Ⅱ)隨機(jī)變量的可能取值為.由(Ⅰ)可知,概率為因?yàn)?~,所以.隨機(jī)變量的分布列為


0
1
2
3





 
解:(Ⅰ)根據(jù)題意,
參加社區(qū)服務(wù)時(shí)間在時(shí)間段小時(shí)的學(xué)生人數(shù)為(人),
參加社區(qū)服務(wù)時(shí)間在時(shí)間段小時(shí)的學(xué)生人數(shù)為(人).
所以抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù)為人.
所以從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的
概率估計(jì)為                         5分
(Ⅱ)由(Ⅰ)可知,從全市高中生中任意選取1人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率為
由已知得,隨機(jī)變量的可能取值為
所以
;


隨機(jī)變量的分布列為

      • 0
        1
        2
        3



        練習(xí)冊(cè)系列答案
        相關(guān)習(xí)題

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示:

        將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
        (1)求在未來(lái)連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另一天的日銷售量低于50個(gè)的概率;
        (2)用X表示在未來(lái)3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望及方差.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        以下莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(jī)(十位數(shù)字為莖,個(gè)位數(shù)字為葉).乙組記錄中有一個(gè)數(shù)字模糊,無(wú)法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以表示.
        (1)若甲,乙兩個(gè)小組的數(shù)學(xué)平均成績(jī)相同,求的值;
        (2)當(dāng)時(shí),分別從甲,乙兩組同學(xué)中各隨機(jī)選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績(jī)之差的絕對(duì)值不超過(guò)2分的概率.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        某學(xué)校為調(diào)查高一新生上學(xué)路程所需要的時(shí)間(單位:分鐘),從高一年級(jí)新生中隨機(jī)抽取100名新生按上學(xué)所需時(shí)間分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

        (1)根據(jù)圖中數(shù)據(jù)求的值
        (2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問(wèn)卷調(diào)查,應(yīng)從第3,4,5組
        各抽取多少名新生?
        (3)在(2)的條件下,該校決定從這6名新生中隨機(jī)抽取2名新生參加交通安全宣傳活動(dòng),求第4組至少有一名志愿者被抽中的概率.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        某種產(chǎn)品的廣告費(fèi)支出x(單位:百萬(wàn)元)與銷售額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

        x
        2
        4
        5
        6
        8
        y
        30
        40
        60
        50
        70
         
        (1)畫(huà)出散點(diǎn)圖;
        (2)求y關(guān)于x的線性回歸方程.
        可能用到公式

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        在對(duì)某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲,乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測(cè)量該產(chǎn)品中某種元素的含量(單位:毫克).
        下表是測(cè)量數(shù)據(jù)的莖葉圖:
        規(guī)定:當(dāng)產(chǎn)品中的此種元素含量毫克時(shí)為優(yōu)質(zhì)品.

        (1)試用上述樣本數(shù)據(jù)估計(jì)甲,乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
        (2)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)的分布列及數(shù)學(xué)期望

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        甲、乙兩名運(yùn)動(dòng)員參加“選拔測(cè)試賽”,在相同條件下,兩人5次測(cè)試的成績(jī)(單位:分)記錄如下:
        甲  86   77   92   72   78
        乙  78   82   88   82   95
        (1)用莖葉圖表示這兩組數(shù)據(jù);.
        (2)現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰(shuí)參賽更好?說(shuō)明理由(不用計(jì)算);
        (3)若從甲、乙兩人的5次成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率.

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

        日期
        12月1日
        12月2日
        12月3日
        12月4日
        12月5日
        溫差x/℃
        10
        11
        13
        12
        8
        發(fā)芽數(shù)y
        /顆
        23
        25
        30
        26
        16
        該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
        (1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
        (2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;
        (3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

        查看答案和解析>>

        科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

        為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

         
        喜愛(ài)打籃球
        不喜愛(ài)打籃球
        合計(jì)
        男生
         
        5
         
        女生
        10
         
         
        合計(jì)
         
         
        50
        已知在全部50人中隨機(jī)抽取1人抽到喜愛(ài)打籃球的學(xué)生的概率為
        (1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
        (2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
        (3)已知喜愛(ài)打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的8位女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.
        下面的臨界值表供參考:

        0.15
        0.10
        0.05
        0.025
        0.010
        0.005
        0.001

        2.072
        2.706
        3.841
        5.024
        6.635
        7.879
        10.828
        (參考公式:

        查看答案和解析>>

        同步練習(xí)冊(cè)答案
      • <code id="cocim"><th id="cocim"></th></code><center id="cocim"><pre id="cocim"></pre></center>