某學校為調(diào)查高一新生上學路程所需要的時間(單位:分鐘),從高一年級新生中隨機抽取100名新生按上學所需時間分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)根據(jù)圖中數(shù)據(jù)求的值
(2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問卷調(diào)查,應從第3,4,5組
各抽取多少名新生?
(3)在(2)的條件下,該校決定從這6名新生中隨機抽取2名新生參加交通安全宣傳活動,求第4組至少有一名志愿者被抽中的概率.

(1);(2)第3、4、5組依次各抽取人數(shù)為3、2、1;(3)

解析試題分析:(1)小矩形的面積表示此組的頻率,根據(jù)頻率和為1可求得的值。(2)先求第3、4、5組的頻率即頻率分布直方圖中各組小矩形的面積,根據(jù)求得各組的頻數(shù),然后求得此3組的頻數(shù)和。最后根據(jù)比例計算各組抽取人數(shù)。(3)記第3組的3名新生為,第4組的2名新生為,第5組的1名新生為,將從這6名新生中隨機抽取2名所辦含的基本事件一一例舉并得到基本事件總數(shù),其中第4組至少有一名的基本事件再一一例舉得到此事件包含的基本事件數(shù)。根據(jù)古典概型概率公式求其概率。
解:(1)因為,                     1分
所以.                                                 2分
(2)依題意可知,
第3組的人數(shù)為,
第4組的人數(shù)為,
第5組的人數(shù)為.
所以3、4、5組人數(shù)共有60.                                      3分
所以利用分層抽樣的方法在60名學生中抽取6名新生,分層抽樣的抽樣比為            4分
所以在第3組抽取的人數(shù)為人 ,
在第4組抽取的人數(shù)為人,
在第5組抽取的人數(shù)為人,                         7分
(3)記第3組的3名新生為,第4組的2名新生為,第5組的1名新生為.則從6名新生中抽取2名新生,共有:

,共有15種.           9分
其中第4組的2名新生至少有一名新生被抽中的有:
共有9種,                                                                  11分
則第4組至少有一名新生被抽中的概率為                   13分
考點:1頻率分布直方圖;2分層抽樣;3古典概型概率。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
海關(guān)對同時從三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如右表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進行檢測

地區(qū)



數(shù)量
50
150
100
 
(1)求這6件樣品中來自各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件送往甲機構(gòu)進一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下表是某市從3月份中隨機抽取的天空氣質(zhì)量指數(shù)()和“”(直徑小于等于微米的顆粒物)小時平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量優(yōu)良.

日期編號










空氣質(zhì)量指數(shù)(










小時平均濃度(










 
(1)根據(jù)上表數(shù)據(jù),估計該市當月某日空氣質(zhì)量優(yōu)良的概率;
(2)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機抽取兩個對其當天的數(shù)據(jù)作進一步的分析,設(shè)事件為“抽取的兩個日期中,當天‘’的小時平均濃度不超過”,求事件發(fā)生的概率;
(3)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機抽取天,記為“小時平均濃度不超過的天數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)學趣味知識培訓活動中,甲、乙兩名學生的5次培訓成績?nèi)缦虑o葉圖所示:

(1)從甲、乙兩人中選擇1人參加數(shù)學趣味知識競賽,你會選哪位?請運用統(tǒng)計學的知識說明理由;
(2) 從乙的5次培訓成績中隨機選擇2個,試求選到121分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某研究機構(gòu)對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù)

x
6
8
10
12
y
2
3
5
6
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 
(2)試根據(jù)已求出的線性回歸方程,預測記憶力為9的同學的判斷力.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市規(guī)定,高中學生三年在校期間參加不少于小時的社區(qū)服務才合格.教育部門在全市隨機抽取200位學生參加社區(qū)服務的數(shù)據(jù),按時間段,,,
(單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區(qū)服務時間不少于90小時的學生人數(shù),并估計
從全市高中學生中任意選取一人,其參加社區(qū)服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數(shù)很多)中任意選取3位學生,記為3位學生中參加社區(qū)服務時間不少于90小時的人數(shù).試求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖,如圖

(1)求的值;
(2)根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的平均值;
(注:設(shè)樣本數(shù)據(jù)第組的頻率為,第組區(qū)間的中點值為,則樣本數(shù)據(jù)的平均值為.)
(3)從盒子中隨機抽取個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某化肥廠有甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量(單位:kg),分別記錄抽查數(shù)據(jù)如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種方法?
(2)試計算甲、乙車間產(chǎn)品重量的平均數(shù)與方差,并說明哪個車間產(chǎn)品較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數(shù)
y(個)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率.
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習冊答案