已知函數(shù)f(x)=
4x,x≤1
-x,x>1
,若f(-x)=2,則x=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分段函數(shù)的性質(zhì)求解.
解答: 解:∵f(x)=
4x,x≤1
-x,x>1
,f(-x)=2,
∴當(dāng)x≤1時(shí),4-x=2,解得x=-
1
2

當(dāng)x>1時(shí),-x=2,解得x=-2不成立.
∴x=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
1
2
.過F1的直線交橢圓于A、B 兩點(diǎn),點(diǎn)A在x軸上方,且△ABF2的周長(zhǎng)為8.
(1)求橢圓E 的方程;
(2)當(dāng)AF1、F1F2、AF2 成等比數(shù)列時(shí),求直線AB的方程;
(3)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4 相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:cos
3
+tan(-
15π
4
)+tan225°•cos240°•sin(-60°)•tan(-30°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,4],f(x)=x2-2x,則函數(shù)f(x)的在[0,2014]上的零點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)工廠有若干車間,現(xiàn)采用分層抽樣的方法從全廠某天的2000件產(chǎn)品中抽取一個(gè)容量為200的樣本進(jìn)行質(zhì)量檢查.已知某車間這一天生產(chǎn)250件產(chǎn)品,則從該車間抽取的產(chǎn)品件數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某圖的程序框圖如圖所示,則該程序運(yùn)行后的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知lga+lgb=0,則滿足不等式
a
a2+1
+
b
b2+1
≤λ的實(shí)數(shù)λ的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=x+
a
x
(a>0)在區(qū)間(
5
,﹢∞)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=
1
3
,tanβ=
1
2
,則tan(α+β)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案