已知f(x)=a(x-2)2+b(a>0),則滿足f(2x-1)<f(數(shù)學(xué)公式)的x取值范圍是________.


分析:先根據(jù)二次函數(shù)的性質(zhì)得出原函數(shù)是關(guān)于直線x=2對(duì)稱的函數(shù),再依據(jù)二次函數(shù)的單調(diào)性,得到關(guān)于x的不等關(guān)系,解之即得實(shí)數(shù)x的取值范圍.
解答:∵f(x)=a(x-2)2+b(a>0),
∴f(x)是關(guān)于直線x=2對(duì)稱的二次函數(shù),故f()=f(
且此二次函數(shù)在x>2時(shí)增函數(shù),x<2時(shí)減函數(shù),
從而由f(2x-1)<f()得<2x-1<,
解得 x∈
故答案為:
點(diǎn)評(píng):本題考查了利用函數(shù)的單調(diào)性和對(duì)稱性解不等式,主要考查了利用函數(shù)的單調(diào)性及對(duì)稱性求解抽象函數(shù)的不等式,還考查了不等式的求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=1-
1
x
,g(x)=
1
1-x
,若實(shí)數(shù)a滿足對(duì)任意的x≠0,1,恒有|f(x)-g(x)|≥a,則a的最大值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a(x-2)2+b(a>0),則滿足f(2x-1)<f(
1
3
)的x取值范圍是
(
2
3
,
7
3
)
(
2
3
,
7
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x(x-a)(x-b),點(diǎn)A(s,f(s)),B(t,f(t)).

(1)若a=b=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)滿足:當(dāng)|x|≤1時(shí),有|f′(x)|≤恒成立,求函數(shù)f(x)的解析表達(dá)式;

(3)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b<2,證明不可能垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案