已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實數(shù)a的值;
(3)設F(x)=f(x)+mg(x)(m∈R)有兩個極值點x1、x2(x1<x2);求實數(shù)m的取值范圍,并證明:
【答案】分析:(1)設G(x)=x2-x-lnx,根據(jù)其導函數(shù)得到其最小值即可得到結(jié)論成立;
(2)先令h(x)=f(x)-ag(x);根據(jù)h(1)=0得到h(x)≥0的必要條件是h'(0)=0;求出a即可;
(3)先求出其導函數(shù),把問題轉(zhuǎn)化為方程2x2-x+m=0在(0,+∞)上有兩個不等的正根,再結(jié)合根與系數(shù)的關系得到m的范圍;進而得到m與x2之間的關系;最后通過對關于x2的函數(shù)的求導,找到其最值點,即可得到結(jié)論成立.
解答:解:(1)設G(x)=x2-x-lnx,
(x>0)…2'
∴G(x)在(0,1)上遞減,在(1,+∞)上遞增
∴G(x)≥G(1)=0
∴f(x)≥g(x)…2'
(2)令h(x)=f(x)-ag(x)
∵h(1)=0
所以h(x)≥0的必要條件是h'(0)=0,得a=1…3'
當a=1時,由(1)知h(x)≥0恒成立.
所以a=1…2'
(3)因為F(x)=f(x)+mg(x)=x2-x+mlnx,所以
F(x)有兩個極值點x1、x2等價于
方程2x2-x+m=0在(0,+∞)上有兩個不等的正根
得  …2'
由F'(x)=0得m=-2x22+x2,(
∴F(x2)=x22-x2+(x2-2x22)lnx2

得ϕ'(x)=(1-4x)lnx>0,∴
所以…4'
點評:本題主要考查學生會求函數(shù)的導函數(shù),會利用導數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.掌握不等式恒成立時所取的條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案