若函數(shù)有兩個不同的零點(diǎn),且,那么在兩個函數(shù)值中               (     )           

A.只有一個小于1                      B.至少有一個小于1

C.都小于1                         D.可能都大于1

 

【答案】

B

【解析】

試題分析:由題意可得函數(shù)f(x)=(x-x1)(x-x2),∴f(1)=(1-x1)(1-x2)=(x1-1)(x2-1),f(3)=(3-x1)(3-x2),∴f(1)?f(3)=(x1-1)(x2-1)(3-x1)(3-x2)=(x1-1)(3-x1)(x2-1)(3-x2) <

即 f(1)?f(3)<1.故f(1),f(3)兩個函數(shù)值中至少有一個小于1。

考點(diǎn):一元二次方程根的分布問題。

點(diǎn)評:本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,本題解題的關(guān)鍵是把函數(shù)表示成兩點(diǎn)式,利用基本不等式求出函數(shù)的最值,屬于中檔題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)(1)選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應(yīng)的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的非零偶函數(shù)y=f(x)滿足:對任意的x,y∈[0,+∞)都有f(x+y)=f(x)•f(y)成立,且當(dāng)x>0時,f(x)>1.
(1)若f(1)=2,求f(-4)的值;
(2)證明:函數(shù)f(x)在(0,+∞)上為單調(diào)遞增函數(shù);
(3)若關(guān)于x的方程f(x)=f(
a(x-1)x+1
)
在(2,+∞)上有兩個不同的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二“零診”考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中a,b為實(shí)常數(shù))。

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間:

(Ⅱ)當(dāng)時,函數(shù)有三個不同的零點(diǎn),證明:

(Ⅲ)若在區(qū)間上是減函數(shù),設(shè)關(guān)于x的方程的兩個非零實(shí)數(shù)根為。試問是否存在實(shí)數(shù)m,使得對任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案