已知函數(shù),點(diǎn)、在函數(shù)的圖象上,
點(diǎn)在函數(shù)的圖象上,設(shè).
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和為;
(3)已知,記數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較與的大。
(1);
(2);
(3)當(dāng)時(shí),;
當(dāng)時(shí),;
當(dāng)時(shí),.
解析試題分析:(1)把點(diǎn)點(diǎn)、代入中,點(diǎn)代入函數(shù)中,可得,然后利用疊加的方法求的;(2)由和可得,然后利用裂項(xiàng)法求數(shù)列的前項(xiàng)和即可;(3)由得,由可得 ,即,求出
,即,所以最后分類(lèi)討論比較與的大小即可.
試題解析:(1)由題有:
3分
(2),
8分
(3),,
由知
, 而,所以可得.
于是
.
當(dāng)時(shí) ;
當(dāng)時(shí),
當(dāng)時(shí),
下面證明:當(dāng)時(shí),
證法一:(利用組合恒等式放縮)
當(dāng)時(shí),
∴當(dāng)時(shí), 13分
證法二:(數(shù)學(xué)歸納法)證明略
證法三:(函數(shù)法)∵時(shí),
構(gòu)造函數(shù),
∴當(dāng)時(shí),
∴在區(qū)間是減函數(shù),
∴當(dāng)時(shí),
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某家具廠生產(chǎn)一種兒童用組合床柜的固定成本為20000元,每生產(chǎn)一組該組合床柜需要增加投入100元,已知總收益滿(mǎn)足函數(shù):,其中是組合床柜的月產(chǎn)量.
(1)將利潤(rùn)元表示為月產(chǎn)量組的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),該廠所獲得利潤(rùn)最大?最大利潤(rùn)是多少?(總收益=總成本+利潤(rùn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)時(shí)下,網(wǎng)校教學(xué)越越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷(xiāo)售量(單位:千套)與銷(xiāo)售價(jià)格(單位:元/套)滿(mǎn)足的關(guān)系式,其中,為常數(shù).已知銷(xiāo)售價(jià)格為4元/套時(shí),每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資、辦公等所有開(kāi)銷(xiāo)折合為每套題2元(只考慮銷(xiāo)售出的套數(shù)),試確定銷(xiāo)售價(jià)格的值,使網(wǎng)校每日銷(xiāo)售套題所獲得的利潤(rùn)最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,一種醫(yī)用輸液瓶可以視為兩個(gè)圓柱的組合體.開(kāi)始輸液時(shí),滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內(nèi)液體忽略不計(jì).
(1)如果瓶?jī)?nèi)的藥液恰好分鐘滴完,問(wèn)每分鐘應(yīng)滴下多少滴?
(2)在條件(1)下,設(shè)輸液開(kāi)始后(單位:分鐘),瓶?jī)?nèi)液面與進(jìn)氣管的距離為(單位:厘米),已知當(dāng)時(shí),.試將表示為的函數(shù).(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(),使得等式對(duì)定義域中的每一個(gè)都成立,則稱(chēng)函數(shù)是“()型函數(shù)”.
(Ⅰ)判斷函數(shù)是否為 “()型函數(shù)”,并說(shuō)明理由;
(Ⅱ)若函數(shù)是“()型函數(shù)”,求出滿(mǎn)足條件的一組實(shí)數(shù)對(duì);,
(Ⅲ)已知函數(shù)是“()型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)為.當(dāng)時(shí),,若當(dāng)時(shí),都有,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,,
(1)求函數(shù)的解析式,并求它的單調(diào)遞增區(qū)間;
(2)若有四個(gè)不相等的實(shí)數(shù)根,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)畫(huà)出的圖象;
(Ⅱ)設(shè)A=求集合A;
(Ⅲ)方程有兩解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/e/1av7v2.png" style="vertical-align:middle;" />,且同時(shí)滿(mǎn)足以下三個(gè)條件:①;②對(duì)任意的,都有;③當(dāng)時(shí)總有.
(1)試求的值;
(2)求的最大值;
(3)證明:當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿(mǎn)足,對(duì)任意都有,且.
(1)求函數(shù)的解析式;
(2)是否存在實(shí)數(shù),使函數(shù)在上為減函數(shù)?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com