已知-1≤x≤
3
2
,那么函數(shù)y=x2+x+1( 。
A.有最小值
3
4
,沒有最大值
B.有最小值
3
4
,有最大值1
C.有最小值1,有最大值
19
4
D.有最小值
3
4
,有最大值
19
4
因?yàn)閥=x2+x+1=(x+
1
2
)
2
+
3
4

在[-
1
2
,
3
2
]上遞增,在[-1,-
1
2
]上遞減.
3
2
離對(duì)稱軸遠(yuǎn).
所以當(dāng)x=
3
2
時(shí)有最大值y=(
3
2
)
2
+
3
2
+1=
19
4
;
當(dāng)x=-
1
2
時(shí)有最小值y=
3
4

故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知-1≤x≤
3
2
,那么函數(shù)y=x2+x+1( 。
A、有最小值
3
4
,沒有最大值
B、有最小值
3
4
,有最大值1
C、有最小值1,有最大值
19
4
D、有最小值
3
4
,有最大值
19
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0≤x≤
3
2
,則函數(shù)f(x)=x2+x+1( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
2
-
3
sin2ωx-sinωx•cosωx (ω>0)
,且f(x)圖象的相鄰兩條對(duì)稱軸間的距離為
π
2
,
(1)求ω的值;
(2)求f(x)在[π, 
3
2
π]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)已知
1-2
31
X=
32
-5-1
,則二階矩陣X=
-10
-2-1
-10
-2-1

查看答案和解析>>

同步練習(xí)冊(cè)答案