高一(1)班參加校生物競賽學(xué)生成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競賽人數(shù)及分?jǐn)?shù)在之間的頻數(shù),并計算頻率分布直方圖中 間的矩形的高;
(2)若要從分?jǐn)?shù)在之間的學(xué)生中任選兩人進行某項研究,求至少有一人分?jǐn)?shù)在之間的概率.
(1)0.016
(2)0.6

試題分析:解.(1)分?jǐn)?shù)在之間的頻數(shù)為,頻率為,
 高一(1)班參加校生物競賽人數(shù)為.             2分
所以分?jǐn)?shù)在之間的頻數(shù)為          4分
頻率分布直方圖中間的矩形的高為   6分
(2)設(shè)至少有一人分?jǐn)?shù)在之間為事件A
之間的人編號為,之間的人編號為,
之間的任取兩人的基本事件為:,,,
,,,,,,. 共
9分
其中,至少有一個在之間的基本事件有個              10分
根據(jù)古典概型概率計算公式,得               11分
答:至少有一人分?jǐn)?shù)在之間的概率                12分
點評:主要是考查了古典概型的概率、直方圖的運用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市2010年4月1日—4月30日對空氣污染指數(shù)的監(jiān)測數(shù)據(jù)如下(主要污染物為可吸入顆粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成頻率分布表;
(2)作出頻率分布直方圖;
(3)根據(jù)國家標(biāo)準(zhǔn),污染指數(shù)在0~50之間時,空氣質(zhì)量為優(yōu);在51~100之間時,為良;在101~150之間時,為輕微污染;在151~200之間時,為輕度污染.
請你依據(jù)所給數(shù)據(jù)和上述標(biāo)準(zhǔn),對該市的空氣質(zhì)量給出一個簡短評價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正六邊形的6個頂點中隨機選擇4個頂點,則構(gòu)成的四邊形是梯形的概率為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知連續(xù)型隨機變量的概率密度函數(shù)
,
(1)    求常數(shù)的值,并畫出的概率密度曲線;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的6個頂點,在頂點取自A,B,C,D,E,F(xiàn)的所有三角形中,隨機(等可能)取一個三角形.設(shè)隨機變量X為取出三角形的面積.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求數(shù)學(xué)期望E ( X ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在進行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;
若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3
次,設(shè)分別表示甲,乙,丙3個盒中的球數(shù).
(1)求依次成公差大于0的等差數(shù)列的概率;
(2)記,求隨機變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知X~B(n,p),EX =8,DX =1.6,則n與p的值分別是      、        ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍天綠樹、愛護環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時每局勝者得1分,負者得0分,比賽進行到有一人比對方多3分或打滿7局時停止.
設(shè)某學(xué)校選手甲和選手乙比賽時,甲在每局中獲勝的概率為,且各局勝負相互獨立.已知
第三局比賽結(jié)束時比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量表示方程實根的個數(shù)(重根按一個計).
(1)求方程有實根的概率;
(2)求的分布列和數(shù)學(xué)期望;
(3)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程有實根的概率.

查看答案和解析>>

同步練習(xí)冊答案