9.已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數(shù)x的取值范圍是(-1,2).

分析 根據(jù)函數(shù)的奇偶性和條件,通過導(dǎo)函數(shù)判斷函數(shù)F(x)的單調(diào)性,利用函數(shù)的奇偶性和單調(diào)性解不等式即可.

解答 解:∵f(x)是奇函數(shù),
∴不等式xf′(x)<f(-x),等價為xf′(x)<-f(x),
即xf′(x)+f(x)<0,
∵F(x)=xf(x),
∴F′(x)=xf′(x)+f(x),
即當x∈(-∞,0]時,F(xiàn)′(x)=xf′(x)+f(x)<0,函數(shù)F(x)為減函數(shù),
∵f(x)是奇函數(shù),
∴F(x)=xf(x)為偶數(shù),且當x>0為增函數(shù).
即不等式F(3)>F(2x-1)等價為F(3)>F(|2x-1|),
∴|2x-1|<3,
∴-3<2x-1<3,
即-2<2x<4,
∴-1<x<2,
即實數(shù)x的取值范圍是(-1,2),
故答案為:(-1,2).

點評 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系的應(yīng)用,根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,是解決本題的關(guān)鍵,綜合考查了函數(shù)性質(zhì)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若不等式x2+(a-4)x+4-2a>0對滿足|a|≤1的所有a都成立,則實數(shù)x的取值范圍是(-∞,1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,點D在∠CAB內(nèi),且∠DAB=30°,設(shè)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),則$\frac{λ}{μ}$等于( 。
A.3B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若$\frac{-{i}^{2013}}{a+bi}$=$\frac{5}{i-2}$(a,b∈R).則以a,b為根的一元二次方程為25x2-15x+2=0..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{4},|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{5+2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2{x}^{2},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$,則f(f($\frac{π}{4}$))等于(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}-4,x>0\\ 2x\;\;,x≤0\end{array}\right.$,則f(f(1))=(  )
A.2B.0C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,?a∈R,都有f(a)+f(-a)=1成立的是( 。
A.f(x)=ln($\sqrt{1+{x}^{2}}$-x)B.f(x)=cos2(x-$\frac{π}{4}$)C.f(x)=$\frac{x}{{x}^{2}+1}$D.f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a-$\frac{5}{2-i}$(a∈R)是純虛數(shù),則a的值為(  )
A.$-\frac{3}{2}$B.-2C.2D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案