分析 根據(jù)函數(shù)的奇偶性和條件,通過導(dǎo)函數(shù)判斷函數(shù)F(x)的單調(diào)性,利用函數(shù)的奇偶性和單調(diào)性解不等式即可.
解答 解:∵f(x)是奇函數(shù),
∴不等式xf′(x)<f(-x),等價為xf′(x)<-f(x),
即xf′(x)+f(x)<0,
∵F(x)=xf(x),
∴F′(x)=xf′(x)+f(x),
即當x∈(-∞,0]時,F(xiàn)′(x)=xf′(x)+f(x)<0,函數(shù)F(x)為減函數(shù),
∵f(x)是奇函數(shù),
∴F(x)=xf(x)為偶數(shù),且當x>0為增函數(shù).
即不等式F(3)>F(2x-1)等價為F(3)>F(|2x-1|),
∴|2x-1|<3,
∴-3<2x-1<3,
即-2<2x<4,
∴-1<x<2,
即實數(shù)x的取值范圍是(-1,2),
故答案為:(-1,2).
點評 本題主要考查函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系的應(yīng)用,根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,是解決本題的關(guān)鍵,綜合考查了函數(shù)性質(zhì)的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=ln($\sqrt{1+{x}^{2}}$-x) | B. | f(x)=cos2(x-$\frac{π}{4}$) | C. | f(x)=$\frac{x}{{x}^{2}+1}$ | D. | f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | -2 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com