4.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{4},|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{5+2\sqrt{2}}$.

分析 利用向量的數(shù)量積以及向量的模的求法運(yùn)算法則化簡求解即可.

解答 解:向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{4},|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,
可得$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos$\frac{π}{4}$=2×1×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
則$|{\overrightarrow a+\overrightarrow b}|$=$\sqrt{{\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}}$=$\sqrt{5+2\sqrt{2}}$.
故答案為:$\sqrt{5+2\sqrt{2}}$.

點(diǎn)評 本題考查平面向量的數(shù)量積的運(yùn)算,向量的模的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C所對的邊分別是a,b,c,若a=2,c=2b,則△ABC的面積的最大值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若($\sqrt{{2}^{{x}^{2}}}$+$\root{5}{{2}^{-2x}}$)n展開式的二項式系數(shù)中第二、第三、第四項的系數(shù)成一個等差數(shù)列,且展開式第六項是21,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線l1:x+my+6=0,L2:(m-2)x+3y+2m=0,當(dāng)m為何值時,(1)l1⊥l2;(2)l1∥l2;(3)l1與l2重合?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計算:-1og3(log3$\sqrt{\sqrt{\sqrt{3}}}$)=3log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數(shù)x的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從0,2中選一個數(shù)字,從3,5,7中選兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù).其中奇數(shù)的個數(shù)為( 。
A.18B.16C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=8x有一個公共的焦點(diǎn)F,且兩曲線的一個交點(diǎn)為P,若|PF|=5,則雙曲線的漸近線方程為( 。
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±2y=0D.2x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若tanα、tanβ是方程x${\;}^{2}+3\sqrt{3}$x+4=0的兩根,且-$\frac{π}{2}<α$,$β<\frac{π}{2}$,則α+β=-$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案