已知A、B、C、D是同一球面上的四個(gè)點(diǎn),其中△ABC是正三角形,AD⊥平面ABC,AD=4,AB=2
3
,則該球的表面積為( 。
A、8πB、16π
C、32πD、64π
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由題意把A、B、C、D擴(kuò)展為三棱柱如圖,求出上下底面中心連線的中點(diǎn)與A的距離為球的半徑,然后求出球的表面積.
解答: 解:由題意畫出幾何體的圖形如圖,
把A、B、C、D擴(kuò)展為三棱柱,
上下底面中心連線的中點(diǎn)與A的距離為球的半徑,
AD=4,AB=2
3
,△ABC是正三角形,
所以AE=2,AO=2
2

所求球的表面積為:4π(2
2
2=32π.
故選C.
點(diǎn)評(píng):本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補(bǔ)法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的反函數(shù):y=-
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a|
π
6
+kπ<α<
π
2
+kπ,k∈Z},集合B={β|-
π
4
+2kπ<β<
π
4
+2kπ,k∈Z},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體體ABCD-A1B1C1D1,棱長(zhǎng)為a,在正方體內(nèi)隨機(jī)取一點(diǎn)M.
(1)求M落在三棱柱ABC-A1B1C1內(nèi)的概率;
(2)求M落在三棱錐B-A1B1C1內(nèi)的概率;
(3)求M與面ABCD的距離大于
a
3
的概率;
(4)求M與面ABCD及面A1B1C1D1的距離都大于
a
3
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列命題的真假,并寫出這些命題的否定:
(1)每條直線在y軸上都有截距;
(2)每個(gè)二次函數(shù)的圖象都與x軸相交;
(3)存在一個(gè)三角形,它的內(nèi)角和小于180°;
(4)存在一個(gè)四邊形沒有外接圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+2k+1,
(1)求證直線l恒過一個(gè)定點(diǎn);
(2)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)在第一象限,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的最大值、最小值,并且求使函數(shù)取得最大、最小值的x的集合.
(1)y=
2
+
sinx
π
,x∈R;
(2)y=3-2cosx,x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(θ)=
2cos3θ+sin2(2π-θ)+sin(
π
2
+θ)-3
2+2sin2(
π
2
+θ)-sin(
2
-θ)
,求f(
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知[x]表示不超過實(shí)數(shù)x的最大整數(shù),g(x)=[x],x0是函數(shù)f(x)=log2x-
1
x
的零點(diǎn),則g(x0)的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案