當(dāng)x>-1時(shí),不等式 x+
1
x+1
+1≥a恒成立,則實(shí)數(shù)a的最大值是
 
考點(diǎn):基本不等式在最值問題中的應(yīng)用
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:根據(jù)基本不等式的性質(zhì)求出x+
1
x+1
+1的最小值為2,再根據(jù)當(dāng)x>-1時(shí),不等式x+
1
x+1
+1≥a恒成立,求出a的范圍,繼而問題得以解決.
解答: 解:∵x>-1,
∴x+1>0,
∴x+
1
x+1
+1=x+1+
1
x+1
≥2
(x+1)•
1
x+1
=2,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),
∴x+
1
x+1
+1的最小值為2,
∵不等式x+
1
x+1
+1≥a恒成立,
∴a≤2,
∴實(shí)數(shù)a的最大值是2.
故答案為:2.
點(diǎn)評(píng):本題考查函數(shù)恒成立問題,關(guān)鍵是利用基本不等式,注意等號(hào)成立的條件,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,且長度單位相同.曲線C的方程是ρ=2
2
sin(θ-
π
4
),直線l的參數(shù)方程為
x=1+tcosα
y=2+tsinα
(t為參數(shù),0≤a<π),設(shè)P(1,2),直線l與曲線C交于A,B兩點(diǎn).
(1)當(dāng)a=0時(shí),求|AB|的長度;    
(2)求|PA|2+|PB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市移動(dòng)通訊公司開設(shè)了兩種通訊業(yè)務(wù):(1)全球通業(yè)務(wù),(2)神州行業(yè)務(wù),并規(guī)定:全球通使用者要先繳50元基礎(chǔ)費(fèi),然后每通話1分鐘付話費(fèi)0.4元;神州行用戶不繳基礎(chǔ)費(fèi),每通話1分鐘付話費(fèi)0.6元.已知某人預(yù)計(jì)一個(gè)月內(nèi)使用話費(fèi)200元,則他應(yīng)該選擇
 
業(yè)務(wù)比較劃算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:AD=2,AB=4的長方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA∥平面MBD;
(2)試問:在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若c=2acosB,則△ABC的形狀為( 。
A、直角三角形
B、等腰三角形
C、等邊三角形
D、銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列函數(shù)(1)y=x2+|x|+2,x≤0(2)y=t2-t+2,t≤0(3)y=x2-|x|+2,x≥0(4)y=(
x
4+
x2
+2,其中與函數(shù)y=x2-x+2,x≤0相等的有( 。
A、(1)
B、(1)(2)
C、(1)(2)(4)
D、(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為
1
2
與p,且乙投球2次均未命中的概率為
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且A,B,C成等差數(shù)列,a,b,c也成等差數(shù)列,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中正(主)視圖中半圓的半徑為1,則該幾何體的體積為( 。
A、24-
π
3
B、24-
2
C、24-π
D、24-
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案