8.已知函數(shù)f(x)=log2(4x+1)+kx是偶函數(shù).
(1)求k的值;
(2)設(shè)g(x)=f(x)-x,求函數(shù)g(x)在區(qū)間[-2,1]上的取值范圍.

分析 (1)根據(jù)偶函數(shù)的定義求出k的值即可;
(2)由(1)可得g(x)=log2(4x+1)-2x=log2(1+$\frac{1}{{4}^{x}}$),分析函數(shù)的單調(diào)性,可得函數(shù)g(x)在區(qū)間[-2,1]上的取值范圍.

解答 解:(1)∵f(x)是偶函數(shù),
∴f(-x)=f(x).
∴l(xiāng)og2(4-x+1)-kx=log2(4x+1)+kx,
∴2x+2kx=0.
由于此式對(duì)于一切x∈R恒成立,
∴k=-1
(2)由(1)得:f(x)=log2(4x+1)-x,
∴g(x)=f(x)-x=log2(4x+1)-2x=log2($\frac{{4}^{x}+1}{{4}^{x}}$)=log2(1+$\frac{1}{{4}^{x}}$),
故函數(shù)g(x)在區(qū)間[-2,1]上為減函數(shù),
當(dāng)x=-2時(shí),函數(shù)取最大值log217,
當(dāng)x=1時(shí),函數(shù)取最小值log2$\frac{5}{4}$,
故函數(shù)g(x)在區(qū)間[-2,1]上的取值范圍為[log2$\frac{5}{4}$,log217]

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的單調(diào)性,函數(shù)的奇偶性,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.角α終邊上一點(diǎn)的坐標(biāo)為(1,2),則tan2α=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足f(x+2)=$\frac{1}{2}$f(x),當(dāng)x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-2{x}^{2},0≤x<1}\\{-{2}^{1-|x-\frac{3}{2}|},1≤x<2}\end{array}\right.$,函數(shù)g(x)=(2x-x2)ex+m,若?x1∈[-4,-2),?x2∈[-1,2],使得不等式f(x1)-g(x2)≥0成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,-8]B.(-∞,$\frac{3}{e}$+8]C.[$\frac{3}{e}$-8,+∞)D.(-∞,$\frac{3}{e}$-8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一動(dòng)點(diǎn)到x軸和y軸的距離之比為2,則動(dòng)點(diǎn)的軌跡方程為y=±2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,己知P是平行四邊形ABCD所在平面外一點(diǎn),M,N分別是AB,PC的中點(diǎn),E是PD的中點(diǎn),O是AC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)若MN=BC=4,PA=4$\sqrt{3}$,求異面直線PA與MN所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在橢圓x2+8y2=8上求一點(diǎn)P,使P到直線l:x-y+4=0的距離最小,則P的坐標(biāo)為(-$\frac{8}{3}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知命題p:對(duì)于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{a}$∥$\overrightarrow$是使得|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|成立的一個(gè)充分不必要條件;命題q:若$\overrightarrow{a}$,$\overrightarrow$是單位向量,則$\overrightarrow{a}•\overrightarrow$=1是$\overrightarrow{a}$=$\overrightarrow$的充要條件,則下列說(shuō)法正確的是(  )
A.p∨q為假B.p∧q為真C.¬p∧q為假D.¬p∨q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=3sin(2x+$\frac{π}{3}$)+1.
(1)求f(x)的最小正周期T;
(2)當(dāng)x為何值時(shí),f(x)取得最大值和最小值;
(3)求f(x)的對(duì)稱軸及對(duì)稱點(diǎn);
(4)求f(x)的單調(diào)區(qū)間:
(5)求f(x)在[0,$\frac{π}{2}$]上的單調(diào)區(qū)間;
(6)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,$\frac{3π}{4}$),求sinθ•cosθ,sin2θ,cos2θ,sinθ,cosθ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案