設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,點(an+1,Sn)在直線2x+y-2=0上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)是否存在實數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說明理由.
(Ⅲ)求證:
【答案】分析:(Ⅰ)利用數(shù)列{an}的前n項Sn與an的關(guān)系通過相減的思想得到數(shù)列相鄰項之間的關(guān)系式是解決本題的關(guān)鍵,證明出該數(shù)列是特殊數(shù)列,進而確定出其通項公式;
(Ⅱ)解法一:確定出數(shù)列{an}的前n項和為Sn的表達(dá)式是解決本題的關(guān)鍵,數(shù)列為等差數(shù)列首先保證其前3項滿足等差數(shù)列的關(guān)系,得出關(guān)于λ的方程,從而確定出λ的值;
解法二:先確定出數(shù)列{an}的前n項和為Sn的表達(dá)式,利用數(shù)列為等差數(shù)列的通項公式的特征尋找關(guān)于λ的方程,通過求解方程確定出λ的值;
(Ⅲ)對該和式的通項進行轉(zhuǎn)化是解決本題的關(guān)鍵,用到了裂項求和的思想,求出該和式,利用函數(shù)的單調(diào)性完成該不等式的證明.
解答:解:(Ⅰ)由題意可得:2an+1+Sn-2=0.①n≥2時,2an+Sn-1-2=0.②
①─②得,

∴{an}是首項為1,公比為的等比數(shù)列,∴
(Ⅱ)解法一:∵
為等差數(shù)列,
成等差數(shù)列,
2
得λ=2.
又λ=2時,,顯然{2n+2}成等差數(shù)列,
故存在實數(shù)λ=2,使得數(shù)列成等差數(shù)列.
解法二:∵

欲使成等差數(shù)列,只須λ-2=0即λ=2便可.
故存在實數(shù)λ=2,使得數(shù)列成等差數(shù)列.
(Ⅲ)證明:∵
=

=
==
又函數(shù)=在x∈[1,+∞)上為增函數(shù),
,
,
點評:本題屬于數(shù)列與不等式的綜合問題,考查學(xué)生的轉(zhuǎn)化與化歸的思想,考查學(xué)生分析問題解決問題的能力和意識,要用好數(shù)列的前n項 Sn與an的關(guān)系,等差數(shù)列、等比數(shù)列有關(guān)公式,裂項求和的思想和方法,數(shù)列的函數(shù)意識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sna1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案