20.已知函數(shù)f(x)是定義在R上的偶函數(shù),x<0時,f(x)=x3,那么f(2)的值是( 。
A.8B.-8C.$\frac{1}{8}$D.$-\frac{1}{8}$

分析 由已知可得f(2)=f(-2),結(jié)合當(dāng)x<0時,f(x)=x3,可得答案.

解答 解:∵當(dāng)x<0時,f(x)=x3,
∴f(-2)=-8,
又∵f(x)是定義在R上的偶函數(shù),
∴f(2)=f(-2)=-8,
故選B.

點評 本題考查的知識點是函數(shù)求值,函數(shù)的奇偶性,難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=$\sqrt{3}$sinx•sin(x+$\frac{π}{2}$)-cos2x+$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間
(Ⅱ)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=($\frac{1}{2}$)${\;}^{6+x-2{x}^{2}}$的增區(qū)間是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C的頂點在坐標(biāo)原點O,對稱軸為x軸,焦點為F,拋物線上一點A的橫坐標(biāo)為2,且$\overrightarrow{FA}$•$\overrightarrow{OA}$=10.
(1)求此拋物線C的方程.
(2)過點(4,0)作直線l交拋物線C于M、N兩點,求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖在直角坐標(biāo)系xOy中,過動點P的直線與直線l:x=-1垂直,垂足為Q,點F(1,0)滿足$\overrightarrow{FP}•\overrightarrow{FQ}=\overrightarrow{QP}•\overrightarrow{QF}$.
(1)求動點P的軌跡C的方程;
(2)證明:以線段PF為直徑的圓與y軸相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“an+1an-1=an2,n≥2且n∈N”是“數(shù)列{an}為等比數(shù)列”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在直三棱柱ABC-A1B1C1中,點D是AB的中點,$A{A_1}=AC=CB=\frac{{\sqrt{2}}}{2}AB$
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角D-CB1-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=cos(2x-\frac{π}{6})+sin2x$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足(2a-c)cosB=bcosC,求$f(\frac{A}{2})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合U=R,A={x|(x-2)(x+1)≤0},B={x|0≤x<3},則∁U(A∪B)=(  )
A.(-1,3)B.(-∞,-1]∪[3,+∞)C.[-1,3]D.(-∞,-1)∪[3,+∞)

查看答案和解析>>

同步練習(xí)冊答案