【題目】解關(guān)于x的不等式:(x﹣1)(x+a)>0.

【答案】解:由(x﹣1)(x+a)=0得,x=1或x=﹣a,當(dāng)a<﹣1時(shí),不等式的解集為{x|x>﹣a或x<1};
當(dāng)a=﹣1時(shí),不等式的解集為{x|x∈R且x≠1};
當(dāng)a>﹣1時(shí),不等式的解集為{x|x<﹣a或x>1}
綜上,當(dāng)a<﹣1時(shí),不等式的解集為{x|x>﹣a或x<1};
當(dāng)a=﹣1時(shí),不等式的解集為{x|x∈R且x≠1};
當(dāng)a>﹣1時(shí),不等式的解集為{x|x<﹣a或x>1}
【解析】先由不等式:(x﹣1)(x+a)>0,得出其對(duì)應(yīng)方程(x﹣1)(x+a)=0的根的情況,再對(duì)參數(shù)a的取值范圍進(jìn)行討論,分類(lèi)解不等式
【考點(diǎn)精析】本題主要考查了解一元二次不等式的相關(guān)知識(shí)點(diǎn),需要掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫(xiě)出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有教職員工150人,其中高級(jí)職稱(chēng)15人,中級(jí)職稱(chēng)45人,一般職員90人,現(xiàn)在用分層抽樣抽取30人,則樣本中各職稱(chēng)人數(shù)分別為(
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對(duì)稱(chēng)的點(diǎn),則a的取值范圍是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)定點(diǎn)P(2,0)的直線l與曲線y= 相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大時(shí),直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號(hào)是 . (寫(xiě)出所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)半徑為x的內(nèi)接圓柱.
(1)試用x表示圓柱的體積;
(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大值是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣3x,則函數(shù)g(x)=f(x)﹣x+3的零點(diǎn)的集合為(
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中a>0且a≠1,設(shè)h(x)=f(x)﹣g(x)
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性并說(shuō)明理由
(2)解不等式h(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不過(guò)第二象限的直線l:ax﹣y﹣4=0與圓x2+(y﹣1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過(guò)點(diǎn)(3,﹣1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對(duì)稱(chēng),求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|y= },B={x|x<﹣4或x>2}
(1)若m=﹣2,求A∩(RB);
(2)若A∪B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案