已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足:0<a1<1,an+1=f(an),n=1,2,3,….
證明:(I)0<an+1<an<1;
(II)數(shù)學(xué)公式

證明:(I)先用數(shù)學(xué)歸納法證明0<an<1,n=1,2,3,
(i)當(dāng)n=1時(shí),由已知顯然結(jié)論成立.
(ii)假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即0<ak<1.
因?yàn)?<x<1時(shí)f′(x)=1-cosx>0,
所以f(x)在(0,1)上是增函數(shù).又f(x)在[0,1]上連續(xù),
從而f(0)<f(ak)<f(1),即0<ak+1<1-sin1<1.
故n=k+1時(shí),結(jié)論成立.
由( i)、(ii)可知,0<an<1對(duì)一切正整數(shù)都成立.
又因?yàn)?<an<1時(shí),an+1-an=an-sinan-an=-sinan<0,
所以an+1<an,
綜上所述0<an+1<an<1.
(II)設(shè)函數(shù)g(x)=sinx-x+,0<x<1.由(I)知,
當(dāng)0<x<1時(shí),sinx<x,
從而g′(x)=cosx-1+=0.
所以g(x)在(0,1)上是增函數(shù).
又g(x)在[0,1]上連續(xù),且g(0)=0,
所以當(dāng)0<x<1時(shí),g(x)>0成立.
于是g(an)>0,即sinan-an+3>0.
故an+13
分析:(I)先利用數(shù)學(xué)歸納法證明0<an<1,再比較an+1和an的大小即可證明結(jié)論.
(II)構(gòu)造新函數(shù),0<x<1.利用g(x)在(0,1)上單調(diào)性來(lái)求g(x)的函數(shù)值的范圍即可證明結(jié)論.
點(diǎn)評(píng):本題考查了函數(shù)與數(shù)列以及數(shù)學(xué)歸納法的綜合應(yīng)用.在用數(shù)學(xué)歸納法時(shí),一定要注意其過(guò)程的寫(xiě)法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案