【題目】如圖,在多邊形ABPCD中(圖1),四邊形ABCD為長方形,為正三角形,,,現(xiàn)以BC為折痕將折起,使點P在平面ABCD內的射影恰好在AD上(圖2.

1)證明:平面平面PAB;

2)若點E在線段PB上,且,當點Q在線段AD上運動時,求點Q到平面EBC的距離.

【答案】1)證明見解析;(2.

【解析】

1)過點,垂足為O,由于點P在平面ABCD內的射影恰好在AD上,可得PO⊥平面ABCD,進一步得到ABAD,由線面垂直的判定可得ABPD,通過計算PA,PDAD,可得,從而得,則平面,再根據面面垂直的判定定理即可證明結果;

2)利用等積法即可求出點到底面的距離.

(1)證明:過點,垂足為O.

由于點P在平面ABCD內的射影恰好在AD上,

平面ABCD,∴,

∵四邊形ABCD為矩形,∴

,∴平面PAD,

,

又由,,可得,同理,

,∴

,且,

平面PAB

又因為平面PCD

所以平面平面PAB

(2)設點E到底面QBC的距離為h,所以點Q到平面EBC的距離為d

,可知

,∵,且,

,∴,

,,

.

所以點Q到平面EBC的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,,,且.

1)求證:平面平面;

2)設二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第七屆世界軍人運動會于20191018日至27日在中國武漢舉行,中國隊以1336442銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知橢圓)的半焦距為,原點到經過兩點,的直線的距離為

)求橢圓的離心率;

)如圖,是圓的一條直徑,若橢圓經過,兩點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體、、、分別賦分分、分、分、分,為了讓學生們體驗賦分制計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如圖所示,小明同學在這次考試中物理分,化學多分.

(1)采用賦分制后,求小明物理成績的最后得分;

(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科從化學、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究一種新藥的療效,選名患者隨機分成兩組,每組各名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標的數(shù)據,并制成如圖,其中“”表示服藥者,“”表示未服藥者.

下列說法中,錯誤的是(

A.服藥組的指標的均值和方差比未服藥組的都低

B.未服藥組的指標的均值和方差比服藥組的都高

C.以統(tǒng)計的頻率作為概率,患者服藥一段時間后指標低于的概率約為

D.這種疾病的患者的生理指標基本都大于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為考察某動物疫苗預防某種疾病的效果,現(xiàn)對200只動物進行調研,并得到如下數(shù)據:

未發(fā)病

發(fā)病

合計

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說法正確的:(

A.至少有99.9%的把握認為“發(fā)病與沒接種疫苗有關”

B.至多有99%的把握認為“發(fā)病與沒接種疫苗有關”

C.至多有99.9%的把握認為“發(fā)病與沒接種疫苗有關”

D.“發(fā)病與沒接種疫苗有關”的錯誤率至少有0.01%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是正方形,四邊形為矩形,,的中點.

1)求證:平面

2)二面角的大小可以為嗎?若可以求出此時的值,若不可以,請說明理由.

查看答案和解析>>

同步練習冊答案