【題目】在平面直角坐標系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,A,B兩點的極坐標分別為.

(1)求圓C的普通方程和直線的直角坐標方程;

(2)點P是圓C上任一點,求△PAB面積的最小值.

【答案】(1)圓C的普通方程為,直線l的直角坐標方程為;(2)4.

【解析】

試題分析:(1)由消去參數(shù)可得圓的普通方程,由可化直線極坐標方程為直角坐標方程;(2)把點的極坐標化為直角坐標后,知這兩點在直線,計算,因此只要求得點到直線的距離的最小值即能得面積的最小值.可用點到直線距離公式,也可用幾何法求得圓心到直線的距離得最小值.

試題解析:1)由

消去參數(shù)t,得,

所以圓C的普通方程為

,

,

換成直角坐標系為,

所以直線l的直角坐標方程為

2化為直角坐標為在直線l上,

并且,

設(shè)P點的坐標為,

則P點到直線l的距離為,

,

所以面積的最小值是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】面對某種流感病毒,各國醫(yī)療科研機構(gòu)都在研究疫苗,現(xiàn)有AB、C三個獨立的研究機構(gòu)在一定的時期研制出疫苗的概率分別為求:

1他們能研制出疫苗的概率;

2至多有一個機構(gòu)研制出疫苗的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓方程;

(2)設(shè)不過原點的直線,與該橢圓交于兩點,直線的斜率依次為,滿足,試問:當變化時,是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

1判斷的奇偶性并用定義證明;

2判斷的單調(diào)性并有合理說明;

3時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】編號1~15的小球共15個,求總體號碼的平均值,試驗者從中抽3個小球,以它們的平均數(shù)估計總體平均數(shù),以編號2為起點,用系統(tǒng)抽樣法抽3個小球,則這3個球的編號平均數(shù)是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1處取得極值,求的值;

2討論的單調(diào)性;

3證明:為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結(jié)算,每輛自行車的日租金元只取整數(shù),用元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入-管理費用)

(1)求函數(shù)的解析式及其定義域;

(2)當租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組幾何體中,都是多面體的一組是( )

A. 三棱柱、四棱臺、球、圓錐 B. 三棱柱、四棱臺、正方體、圓臺

C. 三棱柱、四棱臺、正方體、六棱錐 D. 圓錐、圓臺、球、半球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于四種命題的真假判斷正確的是( )

A. 原命題與其逆否命題的真值相同 B. 原命題與其逆命題的真值相同

C. 原命題與其否命題的真值相同 D. 原命題的逆命題與否命題的真值相反

查看答案和解析>>

同步練習冊答案