兩個(gè)焦點(diǎn)坐標(biāo)分別是F1(0,-5),F(xiàn)2(0,5),離心率為數(shù)學(xué)公式 的雙曲線方程是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)雙曲線的焦點(diǎn)坐標(biāo)可得c=5,結(jié)合雙曲線的離心率可得a=4,進(jìn)而計(jì)算出b的數(shù)值求出答案即可.
解答:由題意可得:兩個(gè)焦點(diǎn)坐標(biāo)分別是F1(0,-5),F(xiàn)2(0,5),
所以c=5,
又因?yàn)殡x心率為=,
所以a=4,所以b=3.且焦點(diǎn)在y軸上,
所以雙曲線的方程為:
故選B.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握雙曲線中相關(guān)的數(shù)值,靈活利用定義、標(biāo)準(zhǔn)方程中的a,b,c的關(guān)系進(jìn)而解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點(diǎn).
(1)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求向量乘積
PF1
PF2
的取值范圍;
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N,且∠MON為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x軸上的兩點(diǎn)A,B分別是橢圓
x2
a2
+
y2
b2
=1
的左右兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(-1,
2
2
)
在橢圓上,線段PB與y軸的交點(diǎn)M線段PB的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率大于零的直線過(guò)D(-1,0)與橢圓交于E、F兩點(diǎn),且
ED
=2
DF
,求直線EF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的取值范圍;

(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)M、N,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

(3)設(shè)是它的兩個(gè)頂點(diǎn),直線AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高二第二學(xué)期期末數(shù)學(xué)(理)試題 題型:解答題

(本小題滿分12分)[來(lái)源:學(xué).科.網(wǎng)Z.X.X.K]

設(shè)、分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的取值范圍;

(2)設(shè)過(guò)定點(diǎn)Q(0,2)的直線與橢圓交于不同的兩點(diǎn)M、N,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

(3)設(shè)是它的兩個(gè)頂點(diǎn),直線AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知x軸上的兩點(diǎn)A,B分別是橢圓數(shù)學(xué)公式的左右兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)數(shù)學(xué)公式在橢圓上,線段PB與y軸的交點(diǎn)M線段PB的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若斜率大于零的直線過(guò)D(-1,0)與橢圓交于E、F兩點(diǎn),且數(shù)學(xué)公式,求直線EF的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案