已知等差數(shù)列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的兩根,數(shù)列{bn}的前n項和為Sn,且Sn=1- bn.

(1)求數(shù)列{an}、{bn}的通項公式;

(2)記cnanbn,求證:cn+1cn.

(1)an=2n-1,bnb1qn-1=(2)證明略


解析:

(1)因為a3,a5是方程x2-14x+45=0的兩根,且數(shù)列{an}的公差d>0,

a3=5,a5=9,從而d==2

ana5+(n-5)d=2n-1                   

又當n=1時,有b1S1=1- b1,∴b1

n≥2時,有bnSnSn-1=(bn-1bn)

∴(n≥2)

∴數(shù)列{bn}是等比數(shù)列,且b1=,q

bnb1qn-1=;                           

(2)由(1)知:cnanbn=,cn+1

cn+1cn=≤0   ∴cn+1cn.                               

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案