19.若存在正整數(shù)m,使得f(n)=(2n-7)3n+9(n∈N*)都能被m整除,則m的最大值為6.

分析 我們將n=1,2,3,4依次代入,計(jì)算相應(yīng)的f(n)的值,由此不難得到滿足條件的m值,然后再根據(jù)數(shù)學(xué)歸納法對(duì)結(jié)論進(jìn)行證明.

解答 解:由f(n)=(2n-7)•3n+9,得f(1)=-6,
f(2)=-3×6,f(3)=-3×6,f(4)=15×6,由此猜想m=6.
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),顯然成立.
(2)假設(shè)n=k時(shí),f(k)能被6整除,
即f(k)=(2k-7)•3k+9能被6整除;
當(dāng)n=k+1時(shí),[2(k+1)-7]•3k+1+9=3[(2k-7)•3k+9]+18(3k-1-1),
由于3k-1-1是2的倍數(shù),故18(3k-1-1)能被6整除.
這就是說,當(dāng)n=k+1時(shí),f(n)也能被6整除.
由(1)(2)可知對(duì)一切正整數(shù)n都有f(n)=(2n+7)•3n+9能被6整除,
m的最大值為6,
故答案為:6.

點(diǎn)評(píng) 本題考查數(shù)學(xué)歸納法的應(yīng)用,考查學(xué)生的觀察能力,考查推理、論證的能力,運(yùn)算難點(diǎn),屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,角A為鈍角,且sinA=$\frac{3}{5}$,點(diǎn)P、Q分別是在角A的兩邊上不同于點(diǎn)A的動(dòng)點(diǎn).
(1)若AP=5,PQ=3$\sqrt{5}$,求AQ的長(zhǎng);
(2)設(shè)∠APQ=α,∠AQP=β,且cosα=$\frac{12}{13}$,求cos(α+β)和cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知α的頂點(diǎn)在原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊過點(diǎn)(-3,4),則cos α的值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線kx2-2ky2=4的一條準(zhǔn)線是y=1,則實(shí)數(shù)k的值是(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$ )的圖象與x軸的一個(gè)交點(diǎn)為(-$\frac{π}{6}$,0),與此交點(diǎn)距離最短的最高點(diǎn)坐標(biāo)是($\frac{π}{12}$,1).
(1)求函數(shù)f(x)的表達(dá)式.
(2)求方程f(x)=a (-1<a<0)在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為π,則ω=2,f($\frac{π}{3}$)=1,在(0,π)內(nèi)滿足f(x0)=2的x0=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.sin(-$\frac{13π}{4}$)的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f'(x0)=2,則$\lim_{△x→0}\frac{{f({x_0})-f({x_0}+△x)}}{△x}$=( 。
A.-1B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.畫出解方程組$\left\{\begin{array}{l}{2x-y=1}\\{4x+3y=7}\end{array}\right.$的一個(gè)算法的流程圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案