5.將曲線ρ2(1+sin2θ)=2化為直角坐標(biāo)方程.

分析 先把曲線的極坐標(biāo)方程轉(zhuǎn)化為ρ2cos2θ+2ρ2sin2θ=2,由此能求出曲線的直角坐標(biāo)方程.

解答 解:∵ρ2(1+sin2θ)=2,
∴ρ2(cos2θ+2sin2θ)=2,
∴ρ2cos2θ+2ρ2sin2θ=2,即x2+2y2=2,
∴曲線的直角坐標(biāo)方程為$\frac{{x}^{2}}{2}$+y2=1.

點(diǎn)評 本題考查曲線的直角坐標(biāo)方程的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知z=(m2-1)+mi在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的取值范圍是( 。
A.(-1,1)B.(-1,0)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)S一顆骰子一次,設(shè)事件A=“出現(xiàn)奇數(shù)點(diǎn)”,事件B=“出現(xiàn)3點(diǎn)或4點(diǎn)”,則事件A,B的關(guān)系是( 。
A.互斥但不相互獨(dú)立B.相互獨(dú)立但不互斥
C.互斥且相互獨(dú)立D.既不相互獨(dú)立也不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某商場為了了解太陽鏡的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了某4個月的月銷售量與當(dāng)月平均氣溫,其數(shù)據(jù)如表:由表中數(shù)據(jù)算出線性回歸方程$\stackrel{∧}{y}$=bx+a中的b=2,氣象部門預(yù)測下個月的平均氣溫約為20℃據(jù)此估計該商場下個月太陽鏡銷售量約為(  )件.
月平均氣溫x(℃)381217
月銷售量y(件)24344454
A.46B.50C.54D.59

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)M的極坐標(biāo)為(6,$\frac{11π}{6}$),則點(diǎn)M關(guān)于y軸對稱的點(diǎn)的直角坐標(biāo)為( 。
A.(-3$\sqrt{3}$,-3)B.(3$\sqrt{3}$,-3)C.(-3$\sqrt{3}$,3)D.(3$\sqrt{3}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系x0y中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,曲線C的極坐標(biāo)方程為$ρ=\frac{sinθ}{{1-{{sin}^2}θ}}$.
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)P(0,2)作斜率為1的直線l與曲線C交于A,B兩點(diǎn),
①求線段AB的長;  
②$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1,x<1}\\{{2}^{1-x},x≥1}\end{array}\right.$的圖象與函數(shù)g(x)=log2(x+a)(a∈R)的圖象恰有一個交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.a>1B.a≤-$\frac{3}{4}$C.a≥1或a<-$\frac{3}{4}$D.a>1或a≤-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某市國慶節(jié)7天假期的樓房認(rèn)購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學(xué)根據(jù)折線圖對這7天的認(rèn)購量與成交量作出如下判斷:①日成交量的中位數(shù)是16;②日成交量超過日平均成交量的有2天;③認(rèn)購量與日期正相關(guān);④10月7日認(rèn)購量的增幅大于10月7日成交量的增幅.上述判斷中錯誤的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在數(shù)列{an}中,a2=$\frac{2}{3}$.
(1)若數(shù)列{an}滿足2an-an+1=0,求an;
(2)若a4=$\frac{4}{7}$,且數(shù)列{(2n-1)an+1}是等差數(shù)列,求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案