【題目】某商場舉行抽獎活動,規(guī)則如下:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和3個黑球,這些球除顏色外完全相同;每次抽獎都從這兩個箱子里各隨機(jī)地摸出2個球,若摸出的白球個數(shù)不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)在一次游戲中,求獲獎的概率;
(2)在三次游戲中,記獲獎次數(shù)為隨機(jī)變量X,求X的分布列及期望.

【答案】
(1)解:設(shè)在一次游戲中獲獎為事件A,

則P(A)= =


(2)解:由題意可知:一次游戲中獲獎的概率為 ,

三次游戲,相當(dāng)于進(jìn)行三次獨(dú)立重復(fù)試驗(yàn),X可能取的值為0,1,2,3.

P(X=0)=(1﹣ 3= ,

P(X=1)= = ,

P(X=2)= = ,

P(X=3)=( 3=

X的分布列為:

X

0

1

2

3

P

∴E(X)= =


【解析】(1)設(shè)在一次游戲中獲獎為事件A,利用互斥事件概率計(jì)算公式能求出獲獎的概率.(2)由題意可知:一次游戲中獲獎的概率為 ,三次游戲,相當(dāng)于進(jìn)行三次獨(dú)立重復(fù)試驗(yàn),X可能取的值為0,1,2,3,由此能求出X的分布列和E(X).
【考點(diǎn)精析】關(guān)于本題考查的離散型隨機(jī)變量及其分布列,需要了解在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

求證:(1)

(2)對,若,=1,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某學(xué)校用簡單隨機(jī)抽樣方法抽取了100名同學(xué),對其日均課外閱讀時(shí)間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

t

男同學(xué)人數(shù)

7

11

15

12

2

1

女同學(xué)人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書迷”.

(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書迷”有多少人?

(2)從已抽取的8名“讀書迷”中隨機(jī)抽取4位同學(xué)參加讀書日宣傳活動.

(i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;

(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)﹣x2 , 在(1,2)內(nèi)任取兩個實(shí)數(shù)x1 , x2(x1≠x2),若不等式 >1恒成立,則實(shí)數(shù)a的取值范圍為(
A.(28,+∞)
B.[15,+∞)
C.[28,+∞)
D.(15,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實(shí)數(shù)的值;

(Ⅱ)證明:當(dāng)時(shí),

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù))

(Ⅰ)試討論函數(shù)的零點(diǎn)個數(shù);

(Ⅱ)證明:當(dāng)時(shí),總有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時(shí)間r(小時(shí))之間近似滿足如圖所示的曲線

(1)寫出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于 微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二八班選出甲、乙、丙三名同學(xué)參加級部組織的科學(xué)知識競賽.在該次競賽中只設(shè)成績優(yōu)秀和成績良好兩個等次,若某同學(xué)成績優(yōu)秀,則給予班級10分的班級積分,若成績良好,則給予班級5分的班級積分.假設(shè)甲、乙、丙成績?yōu)閮?yōu)秀的概率分別為 , , ,他們的競賽成績相互獨(dú)立.
(1)求在該次競賽中甲、乙、丙三名同學(xué)中至少有一名成績?yōu)閮?yōu)秀的概率;
(2)記在該次競賽中甲、乙、丙三名同學(xué)所得的班級積分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度但不超過400度的部分按0.8元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).

(1)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的點(diǎn)80%,求的值;

(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

同步練習(xí)冊答案