【題目】如圖,在半徑為的半圓形鐵皮上截取一塊矩形材料ABCD(點(diǎn)AB在直徑上,點(diǎn)C、D在半圓周上),并將其卷成一個(gè)以AD為母線的圓柱體罐子的側(cè)面(不計(jì)剪裁和拼接損耗),

1)若要求圓柱體罐子的側(cè)面積最大,應(yīng)如何截。

2)若要求圓柱體罐子的體積最大,應(yīng)如何截取?

【答案】1)當(dāng)截取的矩形鐵皮的一邊為時(shí),圓柱體罐子的側(cè)面積最大.

2)當(dāng)截取的矩形鐵皮的一邊為時(shí),圓柱體罐子的體積最大.

【解析】解:(1)如圖,設(shè)圓心為O,連結(jié),設(shè)

法一 易得, ,故所求矩形的面積為

(當(dāng)且僅當(dāng), )時(shí)等號(hào)成立) 此時(shí)

法二 設(shè), ; 則, ,

所以矩形的面積為

當(dāng),即時(shí), )此時(shí)

(2)設(shè)圓柱的底面半徑為,體積為,由得, ,

所以,其中

,此時(shí), 上單調(diào)遞增,在上單調(diào)遞減, 故當(dāng) 時(shí),體積最大為 ,

答:(1)當(dāng)截取的矩形鐵皮的一邊 為時(shí),圓柱體罐子的側(cè)面積最大.

(2)當(dāng)截取的矩形鐵皮的一邊 為時(shí),圓柱體罐子的體積最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y滿足約束條件 ,當(dāng)目標(biāo)函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2 時(shí),a2+b2的最小值為(
A.5
B.4
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 , 的夾角為120°,| |=2,| |=3,記| =3 ﹣2 =2 +k
(1)若 ,求實(shí)數(shù)k的值.
(2)是否存在實(shí)數(shù)k,使得 ?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , , 的中點(diǎn), 交于點(diǎn) 側(cè)面.

(1)證明: ;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ) 部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設(shè)g(x)=f(x)﹣cos2x,求函數(shù)g(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(﹣ ,0),B( ,0),P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是﹣
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:

質(zhì)量指標(biāo)值

等級(jí)

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?

(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| |=
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣ <β<0,且sinβ=﹣ ,求sinα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案