精英家教網 > 高中數學 > 題目詳情
在△ABC中,a,b,c分別是角A、B、C的對邊,=(2b-c,cosC),=(a,cosA),且
(1)求角A的大;
(2)求的值域.
【答案】分析:(1)用向量的共線的充要條件及三角形中的正弦定理求得角A.
(2)用三角函數的二倍角公式化簡函數,再利用正弦函數的圖象求出范圍.
解答:解:(1)由得(2b-c)•cosA-acosC=0,
由正弦定理得2sinBcosA-sinCcosA-sinAcosC=0,2sinBcosA-sin(A+C)=0,
∴2sinBcosA-sinB=0,

(2),=
=,
由(1)得

答:角A的大。缓瘮档闹涤驗
點評:本題考查向量與三角函數相結合的綜合問題,是高考中常出現(xiàn)的形式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知y=f(x)函數的圖象是由y=sinx的圖象經過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2
;
③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案