18.函數(shù)f(x)=2sinx的圖象(  )
A.關(guān)于點(diǎn)($\frac{π}{4}$,0)中心對(duì)稱B.關(guān)于點(diǎn)($\frac{π}{2}$,0)中心對(duì)稱
C.關(guān)于點(diǎn)($\frac{3π}{4}$,0)中心對(duì)稱D.關(guān)于點(diǎn)(π,0)中心對(duì)稱

分析 根據(jù)正弦函數(shù)的對(duì)稱中心,直接求出函數(shù)y=2sinx圖象的對(duì)稱中心,即可.

解答 解:因?yàn)楹瘮?shù)y=2sinx圖象的一個(gè)對(duì)稱中心的坐標(biāo)(kπ,0)k∈Z,當(dāng)k=1時(shí)對(duì)稱中心坐標(biāo)為(π,0).
故選D.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查正弦函數(shù)的對(duì)稱性,基本知識(shí)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解某市市民的節(jié)能意識(shí)及行為習(xí)慣等情況,某機(jī)構(gòu)在市區(qū)范圍內(nèi)進(jìn)行了一次有關(guān)市民節(jié)能意識(shí)及行為習(xí)慣的測(cè)試,將所有參加者的筆試成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制成如下的頻數(shù)分布表:
 分?jǐn)?shù)(分?jǐn)?shù)段) 頻數(shù)(人數(shù))
[60,70) 9
[70,80) 19
[80,90) 16
[90,100] 6
 合計(jì) 50
(1)若采用分層抽樣的方法從分?jǐn)?shù)在[60,70)內(nèi)和[90,100]內(nèi)的參加者中抽取5人做問卷調(diào)查,求這5人中分?jǐn)?shù)在[90,100]內(nèi)的人數(shù);
(2)在(1)的條件,從抽取的5人中再隨機(jī)選取3人進(jìn)行跟蹤調(diào)查,記分?jǐn)?shù)在[60,70)內(nèi)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,線段AB過x軸正半軸上一定點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對(duì)稱軸,過A,O,B三點(diǎn)作拋物線C.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)P(n,2)為拋物線C上的點(diǎn),過P(n,2)作傾斜角互補(bǔ)的兩直線PS,PT,分別交拋物線C于S,T.求證:直線ST的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,且滿足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=$\left\{\begin{array}{l}{\frac{2}{{S}_{n}},n為奇數(shù)}\\{{a}_{n}_{n},n為偶數(shù)}\end{array}\right.$,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-3x+5,求f(-3)、f(1)、f($\sqrt{5}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足$\frac{\overrightarrow{a}+3\overrightarrow}{5}$-$\frac{\overrightarrow{a}-\overrightarrow}{2}$=$\frac{1}{5}$(3$\overrightarrow{a}$+2$\overrightarrow$),求證向量$\overrightarrow{a}$和$\overrightarrow$共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l:4x+3y+10=0,半徑為2的圓C與l相切,圓心C在x軸上且在直線l的上方
(1)求圓C的方程;
(2)設(shè)過點(diǎn)P(1,1)的直線l1被圓C截得的弦長等于2$\sqrt{3}$,求直線l1的方程;
(3)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(A在x軸上方),問在x軸正半軸上是否存在點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)二次函數(shù)y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的圖象與一次函數(shù)y2=dx+e(d≠0)的圖象交于點(diǎn)(x1,0),若函數(shù)y=y2+y1的圖象與x軸僅有一個(gè)交點(diǎn),則( 。
A.a(x2-x1)=dB.a(x1-x2)=dC.a(x1-x22=dD.a(x1+x22=d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a、b、c成公差為2的等差數(shù)列,且5sinA=3sinB,則角C=$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案