【題目】命題p:方程沒有實數(shù)根(),命題q:定義域為R,若命題p為真命題,p 為假命題,求k的取值范圍

【答案】(-30)∪[34)

【解析】

試題分析:首先求解命題p,q為真命題時的對應(yīng)的k的取值范圍,由命題p為真命題,p 為假命題可知兩命題一真一假,分情況討論可得到k的取值范圍

試題解析:命題q:方程沒有實數(shù)根(),

=<0, <k<3-----------2分

命題q:g(x)=恒成立,………………………..3分

當(dāng)k=0時;1>0恒成立,符合條件…………………………….4分

當(dāng)k時;綜上.…………….6分

命題p為真命題,p 為假命題,則p,q一真一假………………………………7分

如果p真且q假,則………………………..9分

如果p假且q真,則…………………………….11分

綜上,k的取值范圍為(-3,0)∪[3,4).…………………………………….12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解我校高2017級本部和大學(xué)城校區(qū)的學(xué)生是否愿意參加自主招生培訓(xùn)的情況,對全年級2000名高三學(xué)生進行了問卷調(diào)查,統(tǒng)計結(jié)果如下表:

區(qū)

愿意參加

愿意參加

重慶一中本部校區(qū)

220

980

重慶一中大學(xué)城校區(qū)

80

720

1從愿意參加自主招生培訓(xùn)的同學(xué)中按分層抽樣的方法抽取15人,則大學(xué)城校區(qū)應(yīng)抽取幾人;

2現(xiàn)對愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對于這5道題,考生“如花姐”完全會答的有3題,不完全會的有2道,不完全會的每道題她得分概率滿足:,假設(shè)解答各題之間沒有影響

①對于一道不完全會的題,求“如花姐”得分的均值

②試求“如花姐”在本次摸底考試中總得分的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市隨機抽取一年365天內(nèi)100天的空氣質(zhì)量指數(shù)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下

記某企業(yè)每天由空氣污染造成的經(jīng)濟損失單位:元,空氣質(zhì)量指數(shù)在區(qū)間對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間對企業(yè)造成經(jīng)濟損失成直線模型當(dāng)150時造成的經(jīng)濟損失為500元,當(dāng)200時,造成的經(jīng)濟損失為700元;當(dāng)大于300時造成的經(jīng)濟損失為2000元.

1試寫出的表達式;

2試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失大于200元且不超過600元的概率;

3若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表并判斷

能否有的把握認為該市本年空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.82

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數(shù)yf(x)-g(x)在區(qū)間[a,b]上至少有一個零點,則稱f(x)和g(x)在[a,b]上具有關(guān)系G

(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關(guān)系G,并說明理由;

(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關(guān)系G,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①若直線與平面有兩個公共點,則直線在平面內(nèi);

②若直線上有無數(shù)個點不在平面內(nèi),則;

③若直線與平面相交,則與平面內(nèi)的任意直線都是異面直線;

④如果兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;

⑤若直線與平面平行,則與平面內(nèi)的直線平行或異面;

⑥若平面平面,直線,直線,則直線

上述命題正確的是__________.(請把所有正確命題的序號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

I)若,求函數(shù)在點處的切線方程;

II)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

III)令是自然對數(shù)的底數(shù)),求當(dāng)實數(shù)等于多少時,可以使函數(shù)取得最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為,

(1)

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1若關(guān)于的方程在區(qū)間上有兩個不同的解

的取值范圍;

,求的取值范圍;

2設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,點均在函數(shù)的圖象上.

(1)求證:數(shù)列為等差數(shù)列;

(2)設(shè)是數(shù)列的前項和,求使對所有都成立的最小正整數(shù).

查看答案和解析>>

同步練習(xí)冊答案