設(shè)數(shù)列{an}的前n項(xiàng)之和為Sn,若數(shù)學(xué)公式(n∈N*),則{an}


  1. A.
    是等差數(shù)列,但不是等比數(shù)列
  2. B.
    是等比數(shù)列,但不是等差數(shù)列
  3. C.
    是等差數(shù)列,或是等比數(shù)列
  4. D.
    可以既不是等比數(shù)列,也不是等差數(shù)列
D
分析:,a1=3.當(dāng)n≥2時(shí),an=Sn-Sn-1=,所以12an=(an2+6an+9)-(an-1+3)2,整理得(an-3)2-(an-1+3)2=0,解得an+an-1=0,或an-an-1-6=0,當(dāng)an+an-1=0時(shí),,數(shù)列{an}是以a1=3,公比為-1的等比數(shù)列.當(dāng)an-an-1-6=0時(shí),an-an-1=6,數(shù)列{an}是以a1=3,公差為6的等差數(shù)列.
解答:,
∴a1=3.
當(dāng)n≥2時(shí),an=Sn-Sn-1=,
∴12an=(an2+6an+9)-(an-1+3)2,
∴(an-3)2-(an-1+3)2=0,
∴[(an-3)+(an-1+3)][(an-3)-(an-1+3)]=0,
∴an+an-1=0,或an-an-1-6=0,
當(dāng)an+an-1=0時(shí),,數(shù)列{an}是以a1=3,公比為-1的等比數(shù)列.
當(dāng)an-an-1-6=0時(shí),an-an-1=6,數(shù)列{an}是以a1=3,公差為6的等差數(shù)列.
故選D.
點(diǎn)評(píng):本題考查數(shù)列的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,靈活運(yùn)用數(shù)列遞推式,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案