【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實數(shù)m的最大值;
(2)當a< 時,函數(shù)g(x)=f(x)+|2x﹣1|有零點,求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ex(2x﹣3)﹣ax2+2ax+b,若函數(shù) f(x)存在兩個極值點x1 , x2 , 且極小值點x1大于極大值點x2 , 則實數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1的底面是邊長為4的正三角形,B,E,F(xiàn)分別是AA1 , CC1的中點,且BE⊥B1F.
(Ⅰ)求證:B1F⊥EC1;
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統(tǒng)計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經(jīng)銷商推出A、B、C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統(tǒng)計分析,得到如下的柱狀圖.已知從A、B、C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1倆所獲得的利潤分別是1萬元,2萬元,3萬元.現(xiàn)甲乙兩人從該汽車經(jīng)銷商處,采用上述分期付款方式各購買此品牌汽車一輛.以這100位客戶所采用的分期付款方式的頻率代替1位客戶采用相應分期付款方式的概率.
(1)求甲乙兩人采用不同分期付款方式的概率;
(2)記X(單位:萬元)為該汽車經(jīng)銷商從甲乙兩人購車中所獲得的利潤,求X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+=1,(ab0)的離心率為,點(2,)在C上
(1)求C的方程;
(2)直線l不經(jīng)過原點O,且不平行于坐標軸,l與C有兩個交點A,B,線段AB中點為M,證明:直線OM的斜率與直線l的斜率乘積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015全國統(tǒng)考II)設函數(shù)f(x)=ln(1+|x|)-,則使得f(x)f(2x-1)成立的x的取值范圍是()
A.(,1)
B.(-,)(1,+)
C.(-,)
D.(-,-)(,+)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某旅行社組織一批游客外出旅游,原計劃租用45座客車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座客車,則多出一輛車,且其余客車恰好坐滿,已知45座客車租金為每輛220元,60座客車租金為每輛300元,問:
(1)這批游客的人數(shù)是多少?原計劃租用多少輛45座客車?
(2)若租用同一種車,要使每位游客都有座位,應該怎樣租用才合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)“sin=cos”是“cos2=0”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com