已知函數(shù)f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的導(dǎo)函數(shù).
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范圍;
(2)解關(guān)于x的方程f(x)=|f′(x)|;
(3)設(shè)函數(shù)g(x)=
f(x),f(x)≥f(x)
f(x),f(x)<f(x)
,求g(x)在x∈[2,4]時的最小值.
(1)因為f(x)≤f'(x),所以x2-2x+1≤2a(1-x),
又因為-2≤x≤-1,所以a≥
x2-2x+1
2(1-x)
在x∈[-2,-1]時恒成立,
因為
x2-2x+1
2(1-x)
=
1-x
2
3
2
,所以a≥
3
2
.…(4分)
(2)因為f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,則|x+a|=1+a或|x+a|=1-a. …(7分)
①當a<-1時,|x+a|=1-a,所以a>b>c或x=1-2a;
②當-1≤a≤1時,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③當a>1時,|x+a|=1+a,所以x=1或x=-(1+2a).…(10分)
(3)因為f(x)-f'(x)=(x-1)[x-(1-2a)],g(x)=
f′(x),f(x)≥f′(x)
f(x),f(x)<f′(x)

①若a≥-
1
2
,則x∈[2,4]時,f(x)≥f'(x),所以g(x)=f'(x)=2x+2a,
從而g(x)的最小值為g(2)=2a+4;            …(12分)
②若a<-
3
2
,則x∈[2,4]時,f(x)<f'(x),所以g(x)=f(x)=x2+2ax+1,
-2≤a<-
3
2
時,g(x)的最小值為g(2)=4a+5,
當-4<a<-2時,g(x)的最小值為g(-a)=1-a2
當a≤-4時,g(x)的最小值為g(4)=8a+17.…(14分)
③若-
3
2
≤a<-
1
2
,則x∈[2,4]時,g(x)=
x2+2ax+1,x∈[2,1-2a)
2x+2a,x∈[1-2a,4]

當x∈[2,1-2a)時,g(x)最小值為g(2)=4a+5;
當x∈[1-2a,4]時,g(x)最小值為g(1-2a)=2-2a.
因為-
3
2
≤a<-
1
2
,(4a+5)-(2-2a)=6a+3<0,
所以g(x)最小值為4a+5.
綜上所述,[g(x)]min=
8a+17,a≤-4
1-a2,-4<a<-2
4a+5,-2≤a<-
1
2
2a+4,a≥-
1
2
…(16分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案