【題目】在平面直角坐標(biāo)系xoy中,圓O的參數(shù)方程為(為參數(shù)).過(guò)點(diǎn)()且傾斜角為的直線(xiàn)與圓O交于A、B兩點(diǎn).
(1)求的取值范圍;
(2)求AB中點(diǎn)P的軌跡的參數(shù)方程.
【答案】(1)(2)
【解析】
(1)⊙O的普通方程為x2+y2=1,圓心為O(0,0),半徑r=1,當(dāng)α=時(shí),直線(xiàn)l的方程為x=0,成立;當(dāng)α≠時(shí),過(guò)點(diǎn)(0,﹣)且傾斜角為α的直線(xiàn)l的方程為y=tanαx+,從而圓心O(0,0)到直線(xiàn)l的距離d=<1,進(jìn)而求出或,由此能求出α的取值范圍.
(2)設(shè)直線(xiàn)l的方程為x=m(y+),聯(lián)立,得(m2+1)y2+2+2m2﹣1=0,由此利用韋達(dá)定理、中點(diǎn)坐標(biāo)公式能求出AB中點(diǎn)P的軌跡的參數(shù)方程.
(1)圓O的直角坐標(biāo)方程為:,當(dāng)時(shí),與圓O交于兩點(diǎn),
當(dāng)時(shí),設(shè),則的方程為: 與圓O交于兩點(diǎn)當(dāng)且僅當(dāng)
解得:或,即或,
.
(2) 的參數(shù)方程為:
,
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={(x,y)|f(x,y)=0},若對(duì)任意P1(x1 , y1)∈M,均不存在P2(x2 , y2)∈M使得x1x2+y1y2=0成立,則稱(chēng)集合M為“好集合”,下列集合為“好集合”的是( 。
A.M={(x,y)|y﹣lnx=0}
B.M={(x,y)|y﹣x2﹣1=0}
C.M={(x,y)|(x﹣2)2+y2﹣2=0}
D.M={(x,y)|x2﹣2y2﹣1=0}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠有容量300噸的水塔一個(gè),每天從早六點(diǎn)到晚十點(diǎn)供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時(shí)10噸,工業(yè)用水總量W(噸)與時(shí)間t(單位:小時(shí),規(guī)定早晨六點(diǎn)時(shí)t=0)的函數(shù)關(guān)系為W=100 ,水塔的進(jìn)水量有10級(jí),第一級(jí)每小時(shí)水10噸,以后每提高一級(jí),進(jìn)水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時(shí)打開(kāi)進(jìn)水管.問(wèn)該天進(jìn)水量應(yīng)選擇幾級(jí),既能保證該廠用水(即水塔中水不空),又不會(huì)使水溢出?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交y軸于點(diǎn)N,交橢圓C于點(diǎn)A、P(P在第一象限),過(guò)點(diǎn)P作y軸的垂線(xiàn)交橢圓C于另外一點(diǎn)Q.若 .
(1)設(shè)直線(xiàn)PF、QF的斜率分別為k、k',求證: 為定值;
(2)若 且△APQ的面積為 ,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為的直線(xiàn)與橢圓C:交于A、B兩點(diǎn),線(xiàn)段AB的中點(diǎn)為M(),(m)。
(1)證明:;
(2)設(shè)F為C的右焦點(diǎn),P為C上一點(diǎn),且++=,證明:2||=||+||.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正數(shù)x,y滿(mǎn)足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時(shí),若f(x)>0對(duì)任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 4 | 12 | 8 |
每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè)) | 11 | 9 | 8 | 5 |
(1)作出散點(diǎn)圖;
(2)如果y與x線(xiàn)性相關(guān),求出回歸直線(xiàn)方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a>0,b>0,則稱(chēng) 為a,b的調(diào)和平均數(shù).如圖,點(diǎn)C為線(xiàn)段AB上的點(diǎn),且AC=a,BC=b,點(diǎn)O為線(xiàn)段AB中點(diǎn),以AB為直徑做半圓,過(guò)點(diǎn)C作AB的垂線(xiàn)交半圓于D,連結(jié)OD,AD,BD.過(guò)點(diǎn)C作OD的垂線(xiàn),垂足為E,則圖中線(xiàn)段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調(diào)和平均數(shù)的線(xiàn)段,以及由此得到的不等關(guān)系分別是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com