【題目】如圖所示在6×6的方格中,有A,B兩個格子,則從該方格表中隨機抽取一個矩形,該矩形包含格子A但不包含格子B的概率為

【答案】
【解析】解:根據(jù)題意,如圖假設(shè)水平方向的7條邊依次為a1、a2、…a7,豎直方向的7條邊依次為b1、b2、…b7,

從該方格表中隨機抽取一個矩形,需要在a1、a2、…a7中任選2條,在b1、b2、…b7中任選2條,即可組成一個矩形,

則一共可以抽取C72×C72=21×21=441個矩形;

該矩形包含格子A但不包含格子B,

分2種情況討論:①、在a1、a2中任選1條,a3、a4、a5中任選1條,在b1、b2中任選1條,b3、b4、…b7中任選1條,有C21C31×C21C51種取法,②、在b1、b2中任選1條,b3、b4、b5中任選1條,在a1、a2中任選1條,a3、a4、…a7中任選1條,有C21C31×C21C51種取法,

其中重復(fù)的有C21C31×C21C31種取法,

則矩形包含格子A但不包含格子B的取法有2(C21C31×C21C51)﹣C21C31×C21C31=84種,

故該矩形包含格子A但不包含格子B的概率P= = ;

所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出這兩種魚各1 000,給每條魚做上不影響其存活的標(biāo)記,然后放回池塘,待完全混合后,再每次從池塘中隨機地捕出1 000條魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10,并將記錄獲取的數(shù)據(jù)制作成如圖所示的莖葉圖.

(1)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;

(2)為了估計池塘中魚的總質(zhì)量,現(xiàn)按照(1)中的比例對100條魚進(jìn)行稱重,根據(jù)稱重魚的質(zhì)量介于[0,4.5](單位:千克)之間,將測量結(jié)果按如下方式分成九組:第一組[0,0.5),第二組[0.5,1),…,第九組[4,4.5].如圖是按上述分組方法得到的頻率分布直方圖的一部分.

估計池塘中魚的質(zhì)量在3千克以上(3千克)的條數(shù);

若第三組魚的條數(shù)比第二組多7條、第四組魚的條數(shù)比第三組多7,請將頻率分布直方圖補充完整;

的條件下估計池塘中魚的質(zhì)量的眾數(shù)及池塘中魚的總質(zhì)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是 .假設(shè)兩人射擊是否擊中目標(biāo)相互之間沒有影響;每人各次射擊是否擊中目標(biāo)相互之間也沒有影響.
(1)求甲射擊4次,至少有1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx﹣a(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a∈(0,+∞),x∈(1,+∞),證明:f(x)<axlnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體P﹣ABC體積為V,現(xiàn)內(nèi)部取一點S,則 的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若,判斷函數(shù)的奇偶性,并加以證明

(2)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(3)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正實數(shù)x,y,z滿足x+y+z=1, + + =10,則xyz的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷的單調(diào)性,并用單調(diào)性定義證明;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐PABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,ECD的中點,PA⊥底面ABCDPA.

(1)證明:平面PBE⊥平面PAB;

(2)求二面角ABEP的大。

查看答案和解析>>

同步練習(xí)冊答案