【題目】已知函數(shù),函數(shù),函數(shù)

1)當(dāng)函數(shù)時(shí)為減函數(shù),求a的范圍;

2)若a=e(e為自然對(duì)數(shù)的底數(shù));

求函數(shù)g(x)的單調(diào)區(qū)間;

證明:

【答案】1.2單調(diào)増區(qū)間為單調(diào)減區(qū)間為;證明見(jiàn)解析.

【解析】

試題(1)題意轉(zhuǎn)化為上恒成立;(2,,則,現(xiàn)在要討論(或)的解,關(guān)鍵是函數(shù),同樣我們用導(dǎo)數(shù)來(lái)研究,,當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),所以對(duì)任意,,從而知當(dāng)時(shí),當(dāng),;這一題比較特殊,要證不等式,即證,即證,考慮到在中已證明的最小值為1,那么下面我們?nèi)绻芮蟪?/span>的最大值不大于1(最多等于1),命題即證.這同樣利用導(dǎo)數(shù)知識(shí)可證明.

試題解析:(1)因?yàn)楹瘮?shù)時(shí)為減函數(shù),所以.

.

因?yàn)?/span>,所以,.

當(dāng)a=e時(shí),

所以=

,則,當(dāng)

當(dāng)所以>0.

所以在,;

g(x)的單調(diào)増區(qū)間為單調(diào)減區(qū)間為

證明:由欲證,

只需證

即證.

,則

當(dāng),,

當(dāng),.即

.所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的普通方程為:,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點(diǎn)都在上,且逆時(shí)針依次排列,點(diǎn)的極坐標(biāo)為

1)寫(xiě)出曲線的參數(shù)方程,及點(diǎn)的直角坐標(biāo);

2)設(shè)為橢圓上的任意一點(diǎn),求:的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了實(shí)施“科技下鄉(xiāng),精準(zhǔn)脫貧”戰(zhàn)略,某縣科技特派員帶著三個(gè)農(nóng)業(yè)扶貧項(xiàng)目進(jìn)駐某村,對(duì)僅有的四個(gè)貧困戶進(jìn)行產(chǎn)業(yè)幫扶.經(jīng)過(guò)前期走訪得知,這四個(gè)貧困戶甲、乙、丙、丁選擇三個(gè)項(xiàng)目的意向如下:

扶貧項(xiàng)目

貧困戶

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每個(gè)貧困戶只能從自己已登記的選擇意向中隨機(jī)選取一項(xiàng),且每個(gè)項(xiàng)目至多有兩個(gè)貧困戶選擇,則甲乙兩戶選擇同一個(gè)扶貧項(xiàng)目的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表下所示:

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),均為大于零的常數(shù)),哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;

3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

西安公交六公司車隊(duì)為緩解周邊居民出行壓力,以萬(wàn)元的單價(jià)購(gòu)進(jìn)了一批新車,根據(jù)以往的經(jīng)驗(yàn)可知,每輛車每個(gè)月的運(yùn)營(yíng)成本約為萬(wàn)元.已知該線路公交車票價(jià)為元,使用現(xiàn)金支付的乘客無(wú)優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有萬(wàn)人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),假設(shè)這批車需要)年才能開(kāi)始盈利,求的值.

參考數(shù)據(jù):

其中其中,,

參考公式:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新中國(guó)成立70周年以來(lái),黨中央、國(guó)務(wù)院高度重視改善人民生活,始終把脫貧致富和提高人民生活水平作為一切工作的出發(fā)點(diǎn)和落腳點(diǎn)新疆某地區(qū)為了帶動(dòng)當(dāng)?shù)亟?jīng)濟(jì)發(fā)展,大力發(fā)展旅游業(yè),如圖是2015—2019年到該地區(qū)旅游的游客數(shù)量(單位:萬(wàn)人次)的變化情況,則下列結(jié)論錯(cuò)誤的是(

A.2015—2019年到該地區(qū)旅游的人數(shù)與年份成正相關(guān)

B.2019年到該地區(qū)旅游的人數(shù)是2015年的12

C.2016—2019年到該地區(qū)旅游的人數(shù)平均值超過(guò)了220萬(wàn)人次

D.2016年開(kāi)始,與上一年相比,2019年到該地區(qū)旅游的人數(shù)增加得最多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),對(duì)都有成立,當(dāng)時(shí),有.則下列說(shuō)法正確的是(

A.B.上有5個(gè)零點(diǎn)

C.D.直線是函數(shù)圖象的一條對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是正方形,頂點(diǎn)在底面的射影是底面的中心,且各頂點(diǎn)都在同一球面上,若該四棱錐的側(cè)棱長(zhǎng)為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新型冠狀病毒屬于屬的冠狀病毒,人群普遍易感,病毒感染者一般有發(fā)熱咳嗽等臨床表現(xiàn),現(xiàn)階段也出現(xiàn)無(wú)癥狀感染者.基于目前的流行病學(xué)調(diào)查和研究結(jié)果,病毒潛伏期一般為1-14天,大多數(shù)為3-7.為及時(shí)有效遏制病毒擴(kuò)散和蔓延,減少新型冠狀病毒感染對(duì)公眾健康造成的危害,需要對(duì)與確診新冠肺炎病人接觸過(guò)的人員進(jìn)行檢查.某地區(qū)對(duì)與確診患者有接觸史的1000名人員進(jìn)行檢查,檢查結(jié)果統(tǒng)計(jì)如下:

發(fā)熱且咳嗽

發(fā)熱不咳嗽

咳嗽不發(fā)熱

不發(fā)熱也不咳嗽

確診患病

200

150

80

30

確診未患病

150

150

120

120

1)能否在犯錯(cuò)率不超過(guò)0.001的情況下,認(rèn)為新冠肺炎密切接觸者有發(fā)熱癥狀與最終確診患病有關(guān).

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.645

7.879

10.828

2)在全國(guó)人民的共同努力下,尤其是全體醫(yī)護(hù)人員的辛勤付出下,我國(guó)的疫情得到較好控制,現(xiàn)階段防控重難點(diǎn)主要在境外輸入病例和無(wú)癥狀感染者(即無(wú)相關(guān)臨床表現(xiàn)但核酸檢測(cè)或血清特異性免疫球蛋白M抗體檢測(cè)陽(yáng)者).根據(jù)防控要求,無(wú)癥狀感染者雖然還沒(méi)有最終確診患2019新冠肺炎,但與其密切接觸者仍然應(yīng)當(dāng)采取居家隔離醫(yī)學(xué)觀察14天,已知某人曾與無(wú)癥狀感染者密切接觸,而且在家已經(jīng)居家隔離10天未有臨床癥狀,若該人員居家隔離第天出現(xiàn)臨床癥狀的概率為,,兩天之間是否出現(xiàn)臨床癥狀互不影響,而且一旦出現(xiàn)臨床癥狀立刻送往醫(yī)院核酸檢查并采取必要治療,若14天內(nèi)未出現(xiàn)臨床癥狀則可以解除居家隔離,求該人員在家隔離的天數(shù)(含有臨床癥狀表現(xiàn)的當(dāng)天)的分布列以及數(shù)學(xué)期望值.(保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

同步練習(xí)冊(cè)答案