6.若等差數(shù)列{an}的前n項和為Sn,且7S5+5S7=70,則a2+a5=( 。
A.1B.2C.3D.4

分析 利用等差數(shù)列的通項公式、前n項和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵7S5+5S7=70,
∴7$(5{a}_{1}+\frac{5×4}{2}d)$+5$(7{a}_{1}+\frac{7×6}{2}d)$=70,
化為:2a1+5d=2.
則a2+a5=2a1+5d=2.
故選:B.

點評 本題考查了等差數(shù)列的通項公式、前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E在B1D1上,且ED1=2B1E,AC與BD交于點O.
(Ⅰ)求證:AC⊥平面BDD1B1
(Ⅱ)求三棱錐O-CED1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)g(x)=log2(2x-1),f(x)=log2(x+2),
(1)求不等式g(x)≥f(x)的解集;
(2)在(1)的條件下求函數(shù)y=g(x)+f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=logax(a>0且a≠1)的圖象過($\frac{1}{4}$,2)點.
(1)求a的值;
(2)若g(x)=f(3-x)-f(3+x),求g(x)解析式與定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=loga(x+1)(a>0,a≠1)
(1)當(dāng)a>1時,證明:?x1,x2∈(-1,+∞),x1≠x2,有f($\frac{{x}_{1}+{x}_{2}}{2}$)$>\frac{f({x}_{1})+f({x}_{2})}{2}$;
(2)若曲線y=f(x)有經(jīng)過點(0,1)的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面關(guān)于復(fù)數(shù)$z=\frac{2}{1+i}$的四個命題:p1:|z|=2,${p_2}:{z^2}=2i$,p3:z的共軛復(fù)數(shù)為1+i,p4:z在復(fù)平面內(nèi)對應(yīng)點位于第四象限.其中真命題為( 。
A.p2、p3B.p1、p4C.p2、p4D.p3、p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A(2,0),B(-2,-4),直線l:x-2y+8=0上有一動點P,則|PA|+|PB|的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.二次函數(shù)y=f(x)=ax2+bx+c(x∈R)的部分對應(yīng)如表:
x-4-3-2-10123
y60-4-6-6-406
則關(guān)于x的不等式f(x)≤0的解集為[-3,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若數(shù)列{an}的通項公式是an=(-1)n(3n-2),則a1+a2+…+a20=(  )
A.30B.29C.-30D.-29

查看答案和解析>>

同步練習(xí)冊答案