【題目】已知甲袋中有1個黃球和2個紅球,乙袋中有2個黃球和2個紅球,現(xiàn)隨機(jī)地從甲袋中取出兩個球放入乙袋中,然后從乙袋中隨機(jī)取出1個球,則從乙袋中取出紅球的概率為(
A.
B.
C.
D.

【答案】C
【解析】解:根據(jù)題意,分2種情況討論:
①、從甲袋中取出兩個紅球,其概率為 ,此時乙袋中中有有2個黃球和4個紅球,則從乙袋中取出紅球的概率為 ,則這種情況下的概率為 × = ,②、從甲袋中取出1個紅球和一個黃球,其概率為 × = ,此時乙袋中中有有3個黃球和3個紅球,則從乙袋中取出紅球的概率為 = ,則這種情況下的概率為 × = ,則從乙袋中取出紅球的概率為 = 故選C
根據(jù)題意,分2種情況討論:①、從甲袋中取出兩個紅球,②、從甲袋中取出1個紅球1個黃球;每種情況下先分析紅球取出球的概率,再計算從乙袋中取出紅球的概率,由相互獨立事件概率的乘法公式可得每種情況下的概率,進(jìn)而由分類計數(shù)原理,計算可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點處的切線與直線平行,求實數(shù)的值;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若時,在定義域內(nèi)總有成立,試求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為2的正方體ABCD﹣A1B1C1D1中,點P是正方體棱上的一點(不包括棱的端點),滿足|PB|+|PD1|= 的點P的個數(shù)為;若滿足|PB|+|PD1|=m的點P的個數(shù)為6,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

寫出曲線的極坐標(biāo)的方程以及曲線的直角坐標(biāo)方程;

若過點(極坐標(biāo))且傾斜角為的直線與曲線交于 兩點,弦的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求不等式的解集;

若函數(shù)的最小值為,整數(shù)、滿足,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲﹣18歲的男生體重(kg),得到頻率分布直方圖如圖.根據(jù)圖可得這100名學(xué)生中體重在〔56.5,64.5〕的學(xué)生人數(shù)是(

A.20
B.30
C.40
D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記, , 的斜率為 , .問:是否存在常數(shù),使得?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點,離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點的任一弦(不經(jīng)過點),設(shè)直線與直線相交于點,記, 的斜率為, , .問:是否存在常數(shù),使得?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)將101111011(2)轉(zhuǎn)化為十進(jìn)制的數(shù);
(2)將53(8)轉(zhuǎn)化為二進(jìn)制的數(shù).

查看答案和解析>>

同步練習(xí)冊答案